Failure Modes and Effects Analysis/Critical Items List For Fuel-Oxidizer Management Assembly and Combustion Chamber # Fluids and Combustion Facility Combustion Integrated Rack # Preliminary October 25, 2000 | AUTHORIZED by CM when under FORMAL Configuration Control | | | | | |--|------------------------|--|--|--| | Date | Signature | | | | | 10/30/00 | /s/ Robert H. Van Niel | | | | #### Prepared For: National Aeronautics and Space Administration John H. Glenn Research Center Microgravity Science Division Cleveland, Ohio 44135 Prepared By: Federal Data Corporation Under Contract NAS3-99155 2001 Aerospace Parkway Brook Park, Ohio 44142 #### PREFACE The National Aeronautics and Space Administration (NASA) is developing a modular, multiuser experimentation facility for conducting fluid physics and combustion science experiments in the microgravity environment of the International Space Station (ISS). This facility, called the Fluids and Combustion Facility (FCF), consists of three test platforms: the Fluids Integrated Rack (FIR), the Combustion Integrated Rack (CIR), and the Shared Accommodations Rack (SAR). This document is intended to produce a Failure Modes and Effects Analysis/Critical Items List for the Fuel-Oxidizer Management Assembly (FOMA) contained in the Combustion Integrated Rack (CIR). # FAILURE MODES AND EFFECTS ANALYSIS/CRITICAL ITEMS LIST FOR THE FLUIDS AND COMBUSTION FACILITY COMBUSTION INTEGRATED RACK FUEL OXIDIZER MANAGEMENT ASSEMBLY | Prepared By: | /s/ John M. Brinkman | Date: 10/30/00 | |-----------------|---|-----------------------| | | John M. Brinkman | | | | Systems Safety Engineer | | | | Fluids and Combustion Facility Developm | ent Program | | | Hernandez Engineering Incorporated | G | | | | | | | | | | | | | | Approved By: | /s/ Jon Wetherholt | Date: 10/30/00 | | | Jon Wetherholt | | | | Systems Lead | | | | Fluids and Combustion Facility Developm | ent Program | | | Analex Corporation | | | | | | | | | | | Annuary and Dry | /a/ Milliam Ouinn | Deta: 10/20/00 | | Approved by: | /s/ William Quinn William Quinn | Date: <u>10/30/00</u> | | | | | | | Product Assurance Manager Fluids and Combustion Facility Developm | ont Program | | | Hernandez Engineering Incorporated | lent Program | | | Tiernandez Engineening incorporated | | | | | | | | | | | Concurred By: | /s/ Andrew M. Peddie | Date: 10/30/00 | | , | Andrew M. Peddie | | | | FCF Deputy Director | | | | Federal Data Corporation | | | | • | | | | | | | | | | | Concurred By: | /s/ Christopher J. Pestak | Date: <u>10/30/00</u> | | | Christopher J. Pestak | | | | FCF Director | | | | Analex Corporation | | # REVISION PAGE FAILURE MODES AND EFFECTS ANALYSIS/CRITICAL ITEMS LIST | Revision | Date | Description of Change or ECO's/ECP's Incorporated | Verification and Date | |-------------|----------|---|-----------------------| | Preliminary | 10/25/00 | Initial release for PDR | 10/30/00 | # **TABLE OF CONTENTS** | 1.0 | INTRODUCTION | 1 | |------|---|----| | 1.1 | Purpose | 1 | | 1.2 | Scope | | | 1.3 | Order of precedence for verification requirements | 1 | | 2.0 | DOCUMENTS | 2 | | 2.1 | Order of precedence for documents | 2 | | 2.2 | Applicable documents | 2 | | 2.3 | Reference Documents | 2 | | 3.0 | GENERAL APPROACH | 3 | | 4.0 | SYSTEM DESCRIPTION | 3 | | 4.1 | FOMA DESIGN FEATURES/SPECIFICATIONS | 5 | | 5.0 | FMEA/CIL GROUND RULES AND ASSUMPTIONS | 6 | | 6.0 | CRITICALITY CATEGORIES | 7 | | 7.0 | CRITERIA FOR CRITICAL ITEMS | 8 | | 8.0 | FOMA FMEA WORKSHEETS | 9 | | 9.0 | CRITICAL ITEMS LIST | 91 | | 10.0 | CONCLUSIONS AND RECOMENDATIONS | 93 | | 11.0 | NOTES | 93 | # **LIST OF APPENDICES** | APPENDEX | A. ACRONYMS AND ABBREVIATIONS | 94 | |-----------------|------------------------------------|----| | A.1 | Scope | 94 | | A.2 | List of acronyms and abbreviations | | | APPENDEX | B. DEFINITIONS | 95 | # LIST OF TABLES | TABLE I. | FMEA WORKSHEET FOR THE FOMA Premixed Fuel Supply Manifold | d9 | |-------------|--|----| | TABLE II. | FMEA WORKSHEET FOR THE FOMA Nitrogen Supply Manifold | 25 | | TABLE III. | FMEA WORKSHEET FOR THE FOMA Diluent Gas Supply Manifold | 37 | | TABLE IV. | FMEA WORKSHEET FOR THE FOMA High Percentage Oxygen Supp Manifold | • | | TABLE V. | FMEA WORKSHEET FOR THE FOMA Static Mixer | 57 | | TABLE VI. | FMEA WORKSHEET FOR THE FOMA | 60 | | TABLE VII. | FMEA WORKSHEET FOR THE FOMA Gas Chromatograph | 69 | | TABLE VIII. | FMEA WORKSHEET FOR THE FOMA Exhaust Manifold | 85 | | TABLE IX. | FMEA WORKSHEET FOR THE FOMA Adsorber Cartridge | 88 | | TABLE X. | Critical items List | 91 | # **LIST OF FIGURES** | FIGURE 1. | FOMA Schematic | |-----------|----------------| |-----------|----------------| #### 1.0 INTRODUCTION ### 1.1 Purpose. This document presents a preliminary Failure Modes and Effects Analysis (FMEA) and a Critical Items List (CIL) for the Fuel-Oxidizer Management Assembly (FOMA) of the Combustion Integrated Rack (CIR) which is part of the Fluids and Combustion Facility (FCF) that will be deployed on the International Space Station (ISS). This preliminary FMEA/CIL is intended to determine the possible functional failure modes and their effects on the FOMA and subsequently the CIR, the FCF, and the ISS. This analysis shall promote design improvements, and to promote early considerations of corrective actions in response to various failures. The CIL points to certain items/functions that thru specified failure modes could result in critical safety hazards or loss of capability to adequately perform the science experiments associated with the CIR. #### 1.2 Scope. This preliminary analysis is restricted to the FOMA of the CIR and is not intended as an analysis of other CIR subsystems, FCF systems or space station vehicle hardware of any type. This FMEA/CIL is not intended to analyze the detailed "structure" or composition of 1. FCF software code, 2. software fault tolerance, 3. software design to initiate commands and control, 4. human error, 5. support structure and tubing, 6. electrical wiring, 7. electronic enclosures, 8. mechanical linkages such as power bolts, gears, and cranks. ### 1.3 Order of precedence for verification requirements. The verification requirements contained in this document shall take precedence over any conflicting verification requirements. #### 2.0 DOCUMENTS This section lists specifications, models, standards, guidelines, handbooks, and other special publications. These documents have been grouped into two categories: applicable documents and reference documents. #### 2.1 Order of precedence for documents. In the event of a conflict between this document and other documents referenced herein, the requirements of this document shall apply. In the event of a conflict between this document and the contract, the contractual requirements shall take precedence over this document. All documents used, applicable or referenced, are to be the issues defined in the Configuration Management (CM) contract baseline. All document changes, issued after baseline establishment, shall be reviewed for impact on scope of work. If a change to an applicable document is determined to be effective, and contractually approved for implementation, the revision status will be updated in the CM contract baseline. The contract revision status of all applicable documents is available by accessing the CM database. Nothing in this document supersedes applicable laws and regulations unless a specific exemption has been obtained. #### 2.2 Applicable documents The documents in these paragraphs are applicable to the FCF Project to the extent specified herein. | SSP 30234 | Failure | Modes | and | Effects | Analysis | and | Critical | Items | List | |-----------|--------------------------------|-------|-----|---------|----------|-----|----------|-------|------| | | Requirements for Space Station | | | | | | | | | #### 2.3 Reference Documents The documents in this paragraph are provided only as reference material for background information and are not imposed as requirements. | SSP 50431 | Space Station Program Requirements for Payloads | |----------------|--| | SARGE | Standard Assurance Requirements and Guidelines for Experiments | | CIR-PLAN-A-003 | CIR Flight Safety Data Package | | CIR-SDP-000 | CIR Delta Phase 1 Safety Data Package | | FCF-DOC-003 | Combustion Integrated Rack Baseline System Description | | Schematic | Combustion Integrated Rack – Fuel/Oxidizer Management Assembly | #### 3.0 GENERAL APPROACH After having established a mutual understanding of the functionality of the various major components of the system, CIR designers and reliability engineering have worked together to determine failure modes. Failure modes associated to a particular component/system have been described along with the component function, failure mode criticality, local failure effect, system effect, station/crew effect, potential failure mode cause, failure detection method, and compensating provisions. For PDR, the current concept for failure detection and compensating provisions was noted but is subject to change as our understanding of design and operations improves. Particular items of hardware and their associated failure modes have been selected as critical items and listed in the CIL for special attention. (Critical Items List- CIL) The CIL indicates specific failure modes associated with a specific
device, component, or subsystem that could result in hazards or loss of capability to perform science experiments. #### 4.0 SYSTEM DESCRIPTION The Fuel/Oxidizer Management Assembly (FOMA) provides the ability to safely deliver all gaseous fuels, diluents and oxidizers required to perform combustion experiments in the Combustion Integrated Rack (CIR) test chamber. The FOMA can also sample the test chamber environment via a Gas Chromatograph and control the venting of chamber gases, at acceptable concentration levels, to the International Space Station Vacuum Exhaust System (ISS VES). The FOMA is comprised of two packages, the Gas Delivery Package (GDP) and the Exhaust Vent Package (EVP), which includes the Gas Chromatograph (GC). Each package is described in detail in the following sections. The desired gases are supplied by the Experiment in 3 bottle sizes, which are 1.0 liter, 2.25 liter and 3.8 liter. These gases can be either pure or pre-mixed. The FOMA provides the interface for the bottles as well as ISS supplied nitrogen. The crew will be able to change out the bottles when required. The FOMA also controls the regulation of gas to the Combustion Chamber. On-orbit gas blending will be accomplished by two methods, partial pressure and dynamic mixing. Both of these methods can be used to pressurize the Combustion Chamber to the desired pressure and gas ratio. The dynamic mixing method can accommodate experiments requiring flow through. The Exhaust Vent Package connects the Combustion Chamber with the ISS VES. The package includes the Experiment supplied adsorber cartridge and a re-circulation loop to convert post-combustion gases into species that are acceptable to vent. The adsorber cartridge may be required to remove water and filter particles. The GC will be used to verify the post-combustion gases meet ISS VES requirements prior to venting overboard. FIGURE 1. FOMA Schematic #### 4.1 FOMA DESIGN FEATURES/SPECIFICATIONS #### FOMA Design Features: - Capable of mixing 3 gases - Utilizes ISS nitrogen - Gases supplied by using up to three 3.8 L, 2.25 L, and /or 1.0 L bottles - Bottle pressure up to 14Mpa (~ 2000 PSI) - Static (Partial Pressure) blending - Dynamic blending (mass flow controllers) - High pressure supply directly from gas bottle - Designed to clean: methane, propane, n-hepthane, CO, CO2, sulfur dioxide, nitrous oxide, H2O and others #### FOMA specifications: Gas Bottles Oxygen Composition: 1.0 L up to 85% O2 @ 14Mpa (2000PSIA) 2.25 L up to 50% O2@ 14Mpa (2000PSIA) 3.8 L up to 30% O2@ 14Mpa (2000PSIA) Gas Blending Accuracy: Partial Pressure Method: Less than $\pm 0.35\%$ absolute Dynamic Method: Oxygen Blends: < 25%: $\pm 0.3\%$ absolute Oxygen Blends: > 25%: $\pm 2\%$ of reading Gas Flow Rates: +/- 1.0 Accuracy Maximum from Each Supply (non-fuel): 30 SLM Maximum Possible (All Supplies - non fuel): 90 SLM Maximum Fuel: 2 SLM Exhaust Vent Specifications: Maximum Outlet Pressure = 275.8 kPa (40 psia) Outlet Temperature = 16° - 45° C (60° - 117° F) Maximum Dew Point = 16° C (60° F) Combustion By-Products: Compatible with CIR and ISS VES Concentration Limits: Most Gases can be vented 100% by volume except the following: All Fuels (gaseous state): 80% Lower Explosive Limit (LEL) Oxygen: 30% maximum Combustion By-products: 0.01% by volume #### Adsorber Cartridge: Sizes/Weights: Maximum Diameter: 76 mm (3 inches) Maximum Length: 355 mm (14 inches) Weight (empty): 3.5 kg (8 lbs) Adsorbing Material: Lithium Hydroxide (LiOH) BPL Activated Carbon Silica Gel Particulate Filters #### 5.0 FMEA/CIL GROUND RULES AND ASSUMPTIONS 1. The criticality categorization of a failure mode shall be made on the basis of the worst case potential failure effect regardless of probability of occurrence. [Derived from SSP 30234, "Instructions for Preparation of Failure Modes and Effects Analysis and Critical Items List for Space Station", Section 5.14.1] 2. When considering the failure modes for the internal failure of a component/system, all required functional *inputs* to the component/system (under analysis) shall be assumed to be present and correct. [Derived from SSP 30234, Section 5.11] 3. Maintenance procedures or availability of contingency or off-nominal crew (flight or ground) procedures shall not be considered as "unlike" redundancy or as a valid success path in determining the criticality of a component/system failure mode. [Derived from SSP 30234, Section 5.14.3] 4. The analysis shall identify *all potential* causes for Criticality 1 and 2 failure modes. [Derived from SSP 30234, Section 5.5] 5. Identical items which perform the same function(s)/capability(ies), in the same environment, (where the only difference is location) may be analyzed only once, provided that the failure effects for the items are the same. [Derived from SSP 30234, Section 5.12] - 6. This preliminary FMEA shall be performed to the lowest functional level of analysis necessary to identify critical functions and items. - 7. Blockage of orifices shall be considered a credible failure mode. [Derived from SSP 30234, Section 5.10.2] 8. The external leakage failure mode of any hardware item from any sources (except mating of two surfaces by inspectable welding, brazing, or permaswage) shall be considered a credible failure mode. [Derived from SSP 30234, Section 5.10.2] - 9. Software code and details of human error in an operational scenario shall not be analyzed. - 10. Containment vessels, such as combustion chambers and cylinders containing gases, shall be included in the FMEA. - 11. Only credible failure modes will be analyzed. #### 6.0 CRITICALITY CATEGORIES Categories of 1, 1R, 1S, 1SR, 2, 2R, or 3 shall be assigned to all failure modes of the FCF in order to classify all failure mode effects. [Derived from SSP 30234, section 5.14.1] - 1 A single point failure that could result in loss (failure/damage) of flight hardware, of the ISS itself, or serious injury or loss of flight/ground personnel. - 1R Redundant items/systems, all of which failed, could result in loss (failure/damage) of flight hardware, of the ISS itself, or serious injury or loss of flight/ground personnel. - 1S A single point failure of a system/component designed to provide safety or protection capability against a potentially hazardous condition or event or a single failure point in a safety or hazard monitoring system that causes the system to fail to detect, or operate when needed during the existence of a hazardous condition that could result in loss (failure/damage) of flight hardware, of the ISS itself, or serious injury or loss of flight/ground personnel. - 2 A single point failure that could result in loss or partial loss of a mission critical function. - 2R Redundant items, all of which if failed, could result in loss or partial loss of a mission critical function. - 3 All others. #### 7.0 CRITERIA FOR CRITICAL ITEMS Upon having completed the listing of failure modes and effects associated with the design, each item/system has been assessed according to a set of rules which are used to determine if am item is *critical*. The rule or rules by which the assessment is made are referred to as the "Criteria for Critical Items". Items which are determined to be *critical* are listed separately on a *critical items list*. Critical items are items which, if they occur, could result in serious injury, loss of personnel, loss of facilities, or compromise the attainment of mission objectives. The purpose of a Critical items List (CIL) is to call attention to specific failure modes whose effects are at a high level of severity. Critical Items must be considered and addressed in some manner either by (a) design change, or (b) by compensating provisions within design or operations. Compensating provisions are 1. design features, 2. operational workarounds, 3. maintenance actions, 4. testing, 5. inspections, or 6. Off-nominal procedures which are developed to reduce risk or provide a corrective action in response to system level failure effects. For the FCF, the critical item criteria has been tailored from SSP 30234. The critical items criteria has been simplified and is defined as the following: An item (a hardware device/system with associated failure mode) shall be judged to be critical if: It is a category 1, or 2 item. It is a category 1R item which does not meet its failure tolerance requirement. Criticality 1 and 2 items are single point failure points which could result in worst case effects that directly impact safety or ability to conduct particular scientific experiments. #### 8.0 FOMA FMEA WORKSHEETS TABLE I. FMEA WORKSHEET FOR THE FOMA Premixed Fuel Supply Manifold | Ttom | Sche-matic | Function | Failure Mode and | | | Swatom Effect | Station/Crew | Detection Method/ | 1.Potential Causes and 2. | |------------|------------|---|---|-------|---|--|---|--
--| | Item | | Function | | Crit. | Local Effect | System Effect | | | | | | ID | | Failure Mode | | | | Effects | Time-to-Effect=TE | Compensating Provision | | | | | Number | | | | | /Time-to-Detect=TD | | | Gas Bottle | GB2 | Storage of
Fuel/Premixed Fuel gas
needed for experiments. | FOMA-01-1: Burst
(rupture of cylinder) | 1 | Release of flammable
gas into the CIR and
possible ejection of
projectiles at high
velocity. | Possible damage to
surrounding FOMA
components and loss of
premixed fuel gas supply
needed for experiment.
Inability to carry out
experiments. | anomalous concentra-
tion of pre-mixed fuel
combined with an
ignition source could
cause a fire or explosion.
Toxicity hazard. Ejecta
and fire could inflict
injury on crew, and/or
damage ISS payloads. | fill line registered by
pressure transducers and
PI2 pressure indicator, | 1.Structural failure. Stress cracking due to launch environment, or thermal effects. 2. Would shutdown the system, remove any possible ignition sources, remove damaged bottle, ventilate area, Inspect for damage, Conduct maintenance. | | | | | FOMA-01-2: Leakage
of cylinder | 1R | Release of flammable
gas into an air filled
environment. | Worst case: Loss of
premixed fuel gas supply
needed for experiment.
Inability to carry out
experiments. | Release of flammable gas in an air filled environment is a flammability hazard. (In the worst -case conditions of just enough fuel concentration and the existence of a possible ignition source.) The premix fuel may also constitute a toxicity hazard. | pressure loss in pre-mix gas
fill line registered by
pressure transducers and
PI2 pressure indicator,
and/or visual indication tha
gas bottle has cracked
open. TE and TD are | 1.Structural failure. Stress cracking due to launch environment, or thermal effects. 2. Would shutdown the system, remove any possible ignition sources, remove damaged bottle, ventilate area, Inspect for damage, Conduct maintenance. | | | | | FOMA-01-3: Provides
Fuel gas supply
Contaminated with
undesired chemicals.
(gaseous or particulate
matter) | 3 | Contaminated premixed
fuel gas is passed
through the manifold
gas line into the
combustion chamber. | Worst case: Faulty scientific data obtained as a result of burns containing contaminants for an entire set of combustion experiments. | none | Faulty Scientific data would be obtained. PI or NASA Ground Ops Science staff may notice occurrence of anomalous burns or data readings, otherwise the faulty burn may not be realized until scientific analysis of data. TE and TD are indeterminate. | Gas bottle did not meet Contamination Control Requirements 2. Shutdown system. Remove contaminated gas bottle. Run clean-up loop routine on the Chamber. Test contents with GC to verify clean up. Install new bottle and re-run experiment. | | Item | Sche-matic
ID | Function | Failure Mode and
Failure Mode
Number | Crit. | Local Effect | System Effect | Station/Crew
Effects | Detection Method/
Time-to-Effect=TE
/Time-to-Detect=TD | 1.Potential Causes and 2.
Compensating Provision | |-----------------|------------------|---|---|-------|--|---|--|---|--| | Manual
Valve | MV2 | Manual control of gas
flow out of gas bottle
GB2. | FOMA-01-04: Valve
fails closed.(stuck in
closed position) | | Inability to turn on gas supply from GB2. | Cannot provide gas
supply from GB2 to the
combustion chamber. | None | 1.Astronaut cannot turn valve 2.Pressure transducers downstream on line show little or no pressure. TE=3 -5 min., TD= 3-5 min. | I.Internal damage from launch vibration, corrosion, contamination (debris logged in valve mechanism) 2.would perform a safe removal of the gas bottle and install a spare. | | | | | FOMA-01-05: Valve
fails open. (Stuck in
open position) | 18 | Inability to manually
turn off gas supply from
GB2. | Inability to manually turn off gas supply from GB2 in the event of an emergency. | leak, it may be imperative to shut off gas flow at | 1. Astronaut is unable to close valve 2.Pressure transducers downstream on line show little or no drop in pressure. TE is indeterminate, TD= 3-5 min. | 1.Internal damage from launch vibration, corrosion, contamination (debris logged in valve mechanism) 2.shutdown the system, remove any ignition sources, remove damaged valve & bottle, ventilate area, Inspect for damage, Conduct maintenance. | | | | | FOMA-01-06: External
Leakage | | Leakage of
fuel/premixed fuel gas
into CIR. | Loss of fuel/premixed
fuel gas needed for
experiment. | worst case: 1.rapid leak 2.anomalous concentration 3.presence of ignition source leads to: fire, toxic threat, Crew injury, and damage of other payloads. | Pressure transducers down-
stream on fuel line show
little or no increase in
pressure during fill
operation while all other
indications appear to be
normal. TE is
indeterminate, TD = 3-5
minutes. | 1.Internal/external damage to valve from vibration or corrosion provides a path for external leakage. 2.Would shutdown system, remove any possible ignition sources, ventilate area, Inspect for damage, and conduct maintenance. | | | | | FOMA-01-07: Internal
Leakage | | Leakage of
fuel/premixed fuel gas
into premix manifold
line when valve is in
closed state. | worst possible case: maximum internal leakage: Inability to manually turn off gas supply from GB2 in the event of an emergency. | In the event of a rapid external leak elsewhere ir the FOMA, it may be imperative to shut off gas flow at GB2. Inability to perform this function, may result in inability to combat a hazard. | Pressure transducers
downstream on line show
little or no drop in
pressure.TE is
indeterminate, TD= 3-5
min. | 1.Internal damage from launch vibration or corrosion.2.Would shutdown the system,remove any possible ignition sources,remove damaged valve & bottle, ventilate area, Inspect for damage, Conduct maintenance. | | Item | Sche-matic
ID | Function | Failure Mode and
Failure Mode
Number | Local Effect | System Effect | Station/Crew
Effects | Detection Method/
Time-to-Effect=TE
/Time-to-Detect=TD | | |---------------------|------------------|---|---|--|--|-------------------------|---|--| | | | | FOMA-01-08:
Intermittent operation
(Intermittently fails to
open or close) | Inability to turn on gas
supply, or turn off gas
supply from GB2. | Cannot provide gas
supply from GB2 to the
combustion chamber or
inability to shut off gas
supply in the event of an
emergency. | perform this function, | 2.pressure transducers in
the pre-mix manifold
indicate that pressure does
not rise or fall-off as it | 1.Wear, internal damage from vibration or corrosion.2.Would shutdown the system,remove any possible ignition sources,remove damaged valve & bottle, ventilate area, Inspect for damage, Conduct maintenance. | | Quick
disconnect | QD2 | Transfer of fuel/pre-
mixed fuel gas from
GB2 into manifold line. | FOMA-01-09: Fails to
allow a safe/correct and
complete connection | Inability to transfer
fuel/pre-mixed fuel gas
from supply bottle GB2
to the manifold line | Cannot provide gas
supply from GB2 to the
Combustion Chamber
resulting in the inability
to start the fill operation
and conduct experiment. | None | Visual: Astronaut would not be able to verify a complete connection of the gas bottle to the manifold. TE = 3-5 minutes, TD = 3-5 min. | 1.Corrosion, wear, galling, or damage from launch vibration. 2. "Switch" to a spare gas bottle, repair, or remove and replace quick disconnect. | | | | | FOMA-01-10: Fails to
allow disconnection | Inability to disconnect
the fuel/pre-mixed fuel
gas bottle GB2 in
order
to install fuel gas bottle
for the next experiment | Cannot proceed with experiments | None | Visual: Astronaut would not be able to disconnect the gas bottle from the manifold. TE = 3-5 minut es, TD = 3-5 min. | 1.Corrosion, wear, galling, or
damage from launch vibration. 2.
Maintenance or removal and
replacement of damaged QD. | | | | | FOMA-01-11: External
Leakage | worst case: rapid leak-
loss of pre-mixed fuel
gas at a high
rate.Leakage of
flammable gas into the
CIR. | worst case: Expendature of gas supply. Cannot provide correct amount of fuel/pre-mixed fuel gas from GB2 to the Combustion Chamber. | 2.anomalous | Worst case: leak rate is very low and failure could | 1.Corrosion, wear, galling, or damage from launch vibration. 2.shutdown the system,remove ignition sources,ventilate area, Inspect for damage, maintenance or removal and replacement of damaged QD. | | | | | FOMA-01-12: Inhibits flow | Will not permit flow-
through of pre-mix ed
gas | Cannot provide the correct amount of fuel/pre-mixed fuel gas from GB2 to the combustion chamber.Cannot perform experiments. | | Pressure transducers would not detect the expected build-up of pressure associated to flow. A check on other components in the line would reveal that the disconnect was clogged. TE = 3-5 min.,TD = 3-5 min. | Large debris contamination. Shock or damage following connection, causes internal slippage of parts.2. Repair of QD, or removal & replacement with new bottle assembly. | | Item | Sche-matic
ID | Function | Failure Mode and
Failure Mode
Number | Crit. | Local Effect | System Effect | Station/Crew
Effects | Detection Method/
Time-to-Effect=TE
/Time-to-Detect=TD | 1.Potential Causes and 2.
Compensating Provision | |-----------------|------------------|---|--|-------|---|---|--|---|--| | Manual
Valve | | Manual control of gas
flow out of gas flow
line to muffler MUF 4. | FOMA-01-13: Valve
fails closed. (stuck in
closed position) | 3 | Inability to manually
transfer gas from the
manifold line to muffler
MUF4. | Cannot transfer trapped gas (between bottle and bottle QD)out of the manifold line. Cannot assure that pressure is below 40 psi.Cannot assure that QD can be safely disengaged. Cannot disengage QD. Cannot change bottles.Stops experiments. | | to move but PI2 shows
little or no pressure | 1.Internal damage to valve from vibration or shock, corrosion, or contamination (logged debris in valve mechanism)2. Corrective action: TBD. | | | | | FOMA-01-14: Valve
fails open. (Stuck in
open position) | 1R | | into CIR.1.Best case:
Failure is detected within
minutes by monitoring
pressure transducers.Gas
flow is shut off. 2.Failure | of ignition source leads
to: fire, toxic threat,
Crew injury, and damage
of other payloads. | turn valve.2.)Valve appears
to move but pressure
transducers show
unexpected readings when | 1.Internal damage to valve from vibration or shock, corrosion, or contamination (logged debris in valve mechanism)2. Corrective action: safe shutdown, removal of any ignition sources, remove and replace or repair MV14. | | | | | FOMA-01-15: External
Leakage | 1R | Leakage of pre-mixed
fuel gas directly into the
CIR | into CIR.1.Best case:
Failure is detected within
minutes by monitoring
pressure transducers.Gas
flow is shut off. 2.Failure | 2.anomalous | normal fill operation is resumed. TE is indeterminate. TD = 3-5 | 1.Internal damage to valve from vibration or shock or corrosion.2. Corrective action: safe shutdown, removal of any ignition sources, remove and replace or repair MV14. | | Item | Sche-matic
ID | Function | Failure Mode and
Failure Mode
Number | Crit. | | System Effect | Station/Crew
Effects | Detection Method/
Time-to-Effect=TE
/Time-to-Detect=TD | 1.Potential Causes and 2.
Compensating Provision | |---------|------------------|--|--|-------|--|---|---|--|---| | | | | FOMA-01-16: Internal
leakage | | Leakage of pre-mixed
fuel gas directly to MUF
4 (a passive device)
which immediately
diffuses gas into the
CIR. | Failure is detected within minutes by monitoring pressure transducers. Gas | worst case: 1.rapid leak 2.anomalous concentration 3.presence of ignition source leads to: fire, toxic threat, Crew injury, and damage of other payloads. | Pressure transducers show
unexpected readings when
normal fill operation is
resumed. TE is
indeterminate, TD = 3-5
min. | I.Internal damage to valve from vibration or shock or corrosion.2. Corrective action: safe shutdown, removal of any ignition sources, remove and replace or repair MV14. | | | | | FOMA-01-17:
Intermittent operation | | Inability to enable or
shut off transfer of
fuel/pre-mixed fuel gas
from manifold line to
MUF 4. | Best case: Can't bleed gas out of manifold line when required. Cannot reduce pressure of trapped gas. Worst case: Undetected valve failure (stuck open). Gas diffuses into CIR during normal chamber fill operation. Loss of fuel gas needed for experiments. | external leak 2.anomalous concentration 3.presence of ignition source leads to: fire, toxic threat, Crew injury, and damage of other payloads. | Pressure transducers show unexpected readings when normal fill operation is resumed. TE is indeterminate. TD = 3-5 min. | 1 Wear, iInternal damage to valve from vibration or shock or corrosion.2. Corrective action: safe shutdown, removal of any ignition sources, remove and replace or repair MV14. | | Muffler | MUF 4 | Passive device which diffuses gas from the manifold line into the CIR rack. This is to assure that trapped gas between GB2 and QD2 is reduced to a pressure below 40psi. | FOMA-01-18: Clogged
(gas flow obstructed) | | Inability to manually transfer gas from the manifold line to to the CIR rack in order to reduce pressure of trapped gas. | Cannot transfer trapped gas (between bottle and bottle QD)out of the manifold line. Cannot assure that pressure is below 40 psi.Cannot assure that QD can be safely disengaged. Cannod disengage QD. Cannot change bottles.Stops experiments. | None | Pressure indicator PI2 on pre-mixed fuel line shows that pressure has not been reduced. TE = indeterminate, TD = 3-5 minutes. | 1. Contamination. 2. Corrective action: TBD. | | Item | Sche-matic
ID | Function | Failure Mode and
Failure Mode
Number | Crit. | Local Effect | System Effect | Station/Crew
Effects | Detection Method/
Time-to-Effect=TE
/Time-to-Detect=TD | 1.Potential Causes and 2.
Compensating Provision | |-----------------------|------------------|---|--|-------|--------------------------------|--|--|--|---| | Pressure
Indicator | PI2 | Indicates internal pressure of gas bottle GB2 in order to give the crew an indication that the gas bottle may be diconnected from the manifold. | FOMA-01-19: Visual indicator remains recessed at a pressure above safe pressure threshold. (40psi) | 18 | Provides incorrect indication. |
worst case: pressure is too
great for a safe
disengagement of gas
bottle from QD. Crew
disconnects QD. Bottle is
propelled away from QD
and flight hardware is
damaged. | effect causes a crew
member to be injured and
also damages flight
hardware from another
science payload. | PT4 and other pressure transducer readings on the manifold line, would also provide monitoring of bottle pressure.Disagreement between PI2 and pressure transducers on the line would indicate measurement error. TE is 3-5 sec.Best case TD = 3-5 minutes. | 1.PI2 is not calibrated correctly, or spring is defective and performance is incorrect. 2.Would have to gradually bleed gas from GB2 through MV14 and MUF 4, until GB2 internal pressure was reduced below 40 psi. | | | | | FOMA-01-20: Visual indicator goes to "out" position at a pressure below safe-pressure threshold. (40psi) | 3 | Provides incorrect indication. | Delay of experiment operations. | "Eats-up" crew time. | PT4 and other pressure transducer readings on the manifold line, would also provide monitoring of bottle pressure. Disagreement between PI2 and pressure trans-ducers on the line would indicate measurement error. TE is 3-5 sec.Best case TD = 3-5 minutes. | 1.PI2 is not calibrated correctly, or spring is defective and performance is incorrect. 2. After de-termining that PI2 is reading higher than actual, and it is safe to disconnect GB2 at the QD, GB2 would be diconnected and removed. | | | | | FOMA-01-21: Fails to activate. | 18 | Provides no indication. | worst case: pressure is too
great for a safe
disengagement of gas
bottle from QD. Crew
disconnects QD. Bottle is
propelled away from QD
and flight hardware is
damaged. | effect causes a crew
member to be injured and
also damages flight
hardware from another
science payload. | PT4 and other pressure transducer readings on the manifold line, would also provide monitoring of bottle pressure. Disagreement between PI2 and pressure trans-ducers on the line would indicate measurement failure. TE is 3-5 sec.Best case TD = 3-5 minutes | | | Item | Sche-matic
ID | Function | Failure Mode and
Failure Mode
Number | Crit. | Local Effect | System Effect | Station/Crew
Effects | Detection Method/
Time-to-Effect=TE
/Time-to-Detect=TD | 1.Potential Causes and 2.
Compensating Provision | |-----------------------------|------------------|------------------------|---|-------|---|--|---|--|--| | | | | FOMA-01-21a:
Intermittent operation | 18 | Provides no indication. | worst case: pressure is too
great for a safe
disengagement of gas
bottle from QD. Crew
disconnects QD. Bottle is
propelled away from QD
and flight hardware is
damaged. | effect causes a crew
member to be injured and
also damages flight
hardware from another | PT4 and other pressure transducer readings on the manifold line, would also provide monitoring of bottle pressure. Disagreement between PI2 and pressure trans-ducers on the line would indicate measurement failure. TE is 3-5 sec.Best case TD = 3-5 minutes | | | Pressure
Transduce
rs | | of Fuel/pre-mixed Fuel | FOMA-01-22:
Incorrect measurement:
indicates a pressure that
is lower than actual. | | Provides incorrect data to the FCU/IOP. | worse case: incorrect pressure data allows a pressure build-up on the line to go un-detected. High pressure stress on other line components results in external leakage. Loss of pre-mix ed fuel gas needed for experiments. | worst case: 1.rapid leak 2.anomalous concentration 3.presence of ignition source leads to: fire, toxic threat, Crew injury, and damage of other payloads. | Crew/Ops will expect a particular set of measurements (within uncertainty boundaries) as a function of time. [pressure vs. time curves] Measurement anomoly on transducers would be detectable. TE is indeterminate. TD = 3-5 minutes. | Transducer response drifts out-of-
spec over time. 2. Pressure
transducer would have to be
removed and replaced or
maintenace defered. | | | | | FOMA-01-23:
Incorrect measurement:
Indicates a pressure that
is higher than actual | 3 | Provides incorrect data to the FCU/IOP. | worst case: Delay of experiments as a result of transducer failure and the need to perform fault isolation/corrective action. | worst case: crew/ops
believes that over-
pressure condition exists
and implements fault-
isolation procedure. | Crew/Ops will expect a particular set of measurements (within uncertainty boundaries) as a function of time. [pressure vs. time curves] Measurement anomoly on transducers would be detectable. TE is indeterminate. TD = 3-5 minutes. | Transducer response drifts out -of-spec.2. Pressure transducer would have to be removed and replaced or maintenace defered. | | Item | Sche-matic
ID | Function | Failure Mode and
Failure Mode
Number | Crit. | Local Effect | System Effect | Station/Crew
Effects | Detection Method/
Time-to-Effect=TE
/Time-to-Detect=TD | 1.Potential Causes and 2.
Compensating Provision | |------|------------------|----------|--|-------|--|---|---|--|---| | | | | FOMA-01-24: Failure to operate. | | Provides no data to the FCU/IOP. | un-detected. High
pressure stress on other
line components results in | worst case: 1.rapid leak 2.anomalous concentration 3.presence of ignition source leads to: fire, toxic threat, Crew injury, and damage of other payloads. | Crew/Ops will expect a particular set of measurements (within uncertainty boundaries) as a function of time. [pressure vs. time curves] Measurement anomoly on transducers would be detectable. TE is indeterminate. TD = 3-5 minutes. | Loss of signal from transducer. Pressure transducer would have to be removed and replaced or maintenace defered. | | | | | FOMA-01-24-1:
External Leakage | | worst case: failure goes
undetected. Pre-mixed
fuel gas leaks from
transducer into FOMA
and CIR. | Leakage of gas directly into CIR.1.Best case: Failure is detected within minutes by monitoring data from the other pressure transducers. 2.Failure goes undetected When normal fill operations are resumed, gas needed for experiments is lost. | of gas supply. Cannot provide correct amount of fuel/pre-mixed fuel gas from GB2 to the Combustion Chamber. | Crew/Ops will expect a particular set of measurements (within uncertainty boundaries) as a function of time. [pressure vs. time curves] Measurement anomoly on transducers would be detectable. TE is indeterminate. TD = 3-5 minutes. | 1. Vicon seal pressed against manifold and sealing face of transducer, is cracked, damaged, worn, or deteriorated.2. Pressure transducer would have to be removed and replaced or maintenace defered. | | | | | FOMA-01-24-2:
Intermittent open | | Intermittent loss of output signal | loss of transducer output
resulting in loss of or
garbbled data | Crew may have missing or garbled data. worst case: all 3 pressure transducers fail in this manner. Unlikely, but possible. In this situation, crew is unable to monitor pressure profile during fill operation. Could be a loss of safety monitoring capability | Crew/Ops will expect a particular set of measurements (within uncertainty boundaries) as a function of time. [pressure vs. time curves] Measurement anomoly on transducers would be detectable. TE is indeterminate. TD = 3-5 minutes. | 1.Temperature cycles and/or humidity with chemical contamination and action damages internal leads. Causes an intermittent contact condition.2.Pressure transducer would be removed & replaced or maintenace defered. | | Item | Sche-matic
ID | Function | Failure Mode and
Failure Mode
Number | | | System Effect | Station/Crew
Effects | Detection Method/
Time-to-Effect=TE
/Time-to-Detect=TD | | |--------|------------------|---
--|-----|---|---|--|---|--| | | | | FOMA-01-24-3:
Electrical short | 1SR | Loss of output | Loss of pressure data | data. worst case: all 3 pressure transducers fail. Unlikely, but possible. In this situation, crew is unable to monitor pressure profile during fill operation. Could be a loss of safety monitoring | Measurement anomoly on transducers would be | 1.Temperature cycles and/or humidity with chemical contamination and action damages internal leads. Causes an electrical short condition .2.Automatic: 24 volt power supply goes into current limiting condition and shuts off. Pressure transducer would be r | | Filter | F2 | Provides a filtering- out
of debris that could be
found in the fuel/pre-
mixed fuel gas flowing
through the line. | FOMA-01-25: Fails to
stop contaminants | | Contaminants are passed
on through the
fuel/premix fuel
manifold | Debris in the form of small particles may contaminate com-ponents on the line and also accumulate in the combustion chamber. Experimental data from burns could be skewed or distorted. | | Observations and scientific measurements on experiment flames may indicate spectra that do not represent the intended purity of chemical composition.TE is indeterminate. TD is indeterminate. | 1. Holes, damage, or deterioration of the filter.2.Remove and replace filter. Exhaust, run clean up loop, vent and re-fill chamber with contents from a spare gas bottle. | | | | | FOMA-01-26:Clogged | 3 | | Could stop fill operation
for the combustion
chamber, or greatly
increase the fill time. | | Pressure transducers in the manifold and also in the chamber would show a low pressure. Would initiate fault isolation procedure for manifold components. TE is immediate. TD = 3 to 5 minutes. | | | | | | FOMA-01-27: External
Leakage | 1R | worst case: rapid leak of
flammable pre-mixed
fuel gas into the CIR | causes loss of fuel/pre- | 2.anomalous concentration 3.presence of ignition source leads to: fire, toxic threat, Crew injury, and damage of other payloads. | Pressure transducers in the manifold and also in the chamber would show a low pressure. Would initiate fault isolation procedure for manifold components. TE is immediate. TD = 3 to 5 minutes. | 1.Cracking or rupture of filter assembly or defective seals. 2. safe shutdown, removal of any ignition sources, remove and replace filter. | | Item | Sche-matic
ID | Function | Failure Mode and
Failure Mode
Number | Crit. | Local Effect | System Effect | Station/Crew
Effects | Detection Method/
Time-to-Effect=TE
/Time-to-Detect=TD | 1.Potential Causes and 2.
Compensating Provision | |--------------------|------------------|--|--|-------|---|---|---|---|--| | Solenoid
Valves | SV 6,7,8 | Control of gas flow and pressure through the manifold line | FOMA-01-28:Fails to
open | 3 | Prohibits flow in the manifold line | Cannot provide gas to combustion chamber for burn. Stops experiment. | None. | Current-draw feedback signal monitored by computer. Indications from Pressure trans-ducers PT 25,28,and 29.TE = 3-5 min., TD = 3-5 min. | 1.Coil burn out caused by wearout stresses.2. Solenoid valves are maintainable: Defective coils can be removed and replaced with a spare coil. | | | | | FOMA-01-29: Fails to
close | 1R | manifold line when shutdown is intended | worst case: cannot reduce
or stop flow of fuel gas
into combustion chamber
in an emergency | pressurization of the | Current-draw feedback signal monitored by computer. Indications from Pressure trans-ducers PT 25,28,and 29.TE = 3-5 min., TD = 3-5 min. | 1.Large debris or excessive contamination inside of valve.2.If required, the entire valve can be removed and replaced with a spare. | | | | | FOMA-01-30: External
Leakage | 1R | worst case: rapid leak of
flammable pre-mixed
fuel gas into the CIR | fuel/premixed fuel gas | worst case: 1.rapid leak 2.anomalous concentration 3.presence of ignition source leads to: fire, toxic threat, Crew injury, and damage of other payloads. | Indications from Pressure transducers PT 25,28,and 29.TE is indeterminate. TD = 3-5 min. | 1.Broken or cracked seals caused by changes in temperature or by vibration/shock induced impact.2.If required, the entire valve can be removed and replaced. | | | | | FOMA-01-31: Internal
Leakage | 1R | manifold line when shutdown is intended | worst case: cannot reduce
or stop flow of fuel gas
into combustion chamber
in an emergency | pressurization of the | Indications from Pressure transducers PT 25,28,and 29.TE is indeterminate. TD = 3-5 min. | 1.Large debris or excessive contamination inside of valve.2.If required, the entire valve can be removed and replaced with a spare. | | | | | FOMA-01-32:Intermittent operation | 1R | is intended or may | worst case: cannot reduce
or stop flow of fuel gas
into combustion chamber
in an emergency | pressurization of the | Indications from Pressure transducers PT 25,28,and 29.TE is indeterminate. TD = 3-5 min. | 1.Temperature cycles and/or humidity with chemical contamination and action damages internal leads. Causes an intermittent contact condition.2.If required, the entire valve can be removed and replaced with a spare. | | Item | Sche-matic
ID | Function | Failure Mode and
Failure Mode
Number | | Local Effect | System Effect | Station/Crew
Effects | Detection Method/
Time-to-Effect=TE
/Time-to-Detect=TD | | |------|------------------|----------|--|----|--|--|-------------------------|--|--| | | | | FOMA-01-32-1:
Spurious opening-
Valve opens randomly
without intentional
command | 3R | | Unable to maintain proper pressure/flow levels for test point accuracy. Loss of a test point. | None | Pressure transducer signal and software diagnostic. TE is immediate. TD = 3-5 min. | Uncontrolled computer command
or damaged electronic relay. 2. Re-
initialize software or remove and
replace damaged relay. | | | | | FOMA-01-32-2:
Spurious Closing-
Valve closes randomly
without intentional
command | 3 | | Unable to maintain proper pressure/flow levels for test point accuracy. Loss of a test point. | None | Pressure transducer signal and software diagnostic. TE is immediate. TD = 3-5 min. | 1.Uncontrolled computer
command,damaged solenoid coil or
electronic relay. 2. Re-initialize
software, or remove and replace
damaged coil or relay. | | | | | FOMA-01-32-3: Valve opens too early (not in the operational sequence of the pre-mix manifold) | | Provides unncessary and unexpected fluid line connection. | Unable to maintain proper pressure/flow levels for test point accuracy. Loss of a test point. | None | Pressure transducer signal and software diagnostic. TE is immediate. TD = 3-5 min. | 1.Uncontrolled computer command
or damaged electronic relay. 2. Re-
initialize software or remove and
replace damaged relay. | | | | | FOMA-01-32-4: Valve opens too late. (not within the operational sequence of the pre-mix manifold) | 3 | Hampers gas mixing operational sequence. | Unable to maintain proper pressure/flow levels for test point accuracy. Loss of a test point. | None | Pressure transducer signal and software diagnostic. TE is immediate. TD = 3-5 min. | Uncontrolled computer command
or damaged electronic relay. 2. Re-
initialize software or remove and
replace damaged relay. | | | | | FOMA-01-32-5: over-
heating | | worst case: Temperature of solenoid valve rises above permitted level.Monitoring thermistor shuts down the manifold. | 1.Heat is transferred by
the the mass of the
manifold out of the
area.2.The
experiment is
interrupted until the
solenoid valve is removed
and replaced. Loss of test
point. | | 1.Software diagnostic/monitoring by IOP/FCU. TE = 3 min., TD = 5 min. | Solenoid coil over-current /overheating.2.Remove and replace defective solenoid coil. | | | | | FOMA-01-32-6:
Electrical Short | | Valve will not respond
to software
command.Unexpected
valve closure. | Unable to continue testing.Loss of test point. | None. | Pressure transducer signal and software diagnostic. TE is immediate. TD = 3-5 min. | 1.Solenoid coil insulation damage,
damage to solenoid wiring, or
damaged relay. 2. Remove and
replace defective coil, wiring, or
relay. | | Item | Sche-matic
ID | Function | Failure Mode and
Failure Mode
Number | Crit. | Local Effect | System Effect | Station/Crew
Effects | Detection Method/
Time-to-Effect=TE
/Time-to-Detect=TD | 1.Potential Causes and 2.
Compensating Provision | |-----------------------|------------------|---|--|-------|---|--|--|---|--| | Pressure
Regulator | PR2 | Regulate fuel/pre-
mixed fuel gas pressure
from 2000 PSI to 100
PSI. | FOMA-01-33: Fails to regulate pressure down to specified 100 PSI. | 1R | Build-up of pressure in gas line: possible over-
pressurization. | weakness in manifold line
or any of its components,
in combination with a
large build-up in pressure
leads to leakage of pre-
mixed fuel gas. | pressurization of the manifold and/or | | 1.Loss of initial setting (drifts out of-cal.) or loose internal parts from launch vibration. 2.Detection of over-pressure condition by pressure switch will shut solenoid valves on the line.Pressure reg-ulator can be removed and replaced. | | | | | FOMA-01-34:Over-
regulates pressure far
below 100 PSI. | 3 | Reduction of flow rate inputed to Mass flow controller | Partial loss of some test
points or delay of
experiment. | None. | PT 5 and 6 would measure
an under-pressure
condition. TE is
indeterminate, TD= 3-5
min. | 1.Loss of initial setting (drifts out - of-cal.) or loose internal parts from launch vibration. 2.Pressure regulator can be removed and replaced. | | | | | FOMA-01-35: External
Leakage | 1R | Reduction of flow rate
inputed to Mass flow
controller | Loss of fuel/pre-mixed
fuel gas needed for
experiment. | Non-detection of the
leakage may result in a
flammability or toxicity
hazard to crew. | PT 5 and 6 would measure
an under-pressure
condition. TE is
indeterminate, TD= 3-5
min. | 1.Broken or cracked seals caused by
changes in temperature or by
vibration/shock induced impact.2.If
required, the regulator can be
removed and replaced. | | Pressure
Switch | PS2 | | FOMA-01-36: Fails to
switch solenoid valves
to closed position | 1R | Build-up of pressure in gas line: possible over-pressurization. | Loss of functionality on a
hazard monitoring and
control component. May
not operate when required
to operate in order to
combat a potentially
hazardous condition. | situation where the
pressure regulator has
failed, failure of the
pressure switch could | line would provide an indication that pressure was building up and there is an off-nominal condition.TE = | 1.Electrical short, loss of signal, internal mechanism of switch is jammed. 2.) Off-nominal procedure for clean-up and vent. Remove and replace PS2. Re-run fill operation. | | | | | FOMA-01-37: External
Leakage | 1R | Reduction of flow rate
inputed to Mass flow
controller | Loss of fuel/pre-mixed
fuel gas needed for
experiment. | Non-detection of the
leakage may result in a
flammability or toxicity
hazard to crew. | PT 5 and 6 would measure
an under-pressure
condition. TE is
indeterminate, TD= 3-5
min. | 1.Broken or cracked seals caused by changes in temperature or by vibration/shock induced impact.2.If needed, PS2 can be removed and replaced. | | | Sche-matic
ID | | Failure Mode
Number | | Local Effect | System Effect | Station/Crew
Effects | Detection Method/
Time-to-Effect=TE
/Time-to-Detect=TD | 1.Potential Causes and 2.
Compensating Provision | |----------------------------|------------------|---|---|---|---|---|-------------------------|--|---| | Mass
Flow
Controller | MFC1 | Meters mass flow of
Fuel/pre-mixed Fuel
gas to combustion
chamber for
experiments | FOMA-01-38: Reads
mass flow as higher
than actual | 3 | None. | Incorrect measurement of
the total fuel/pre-mixed
fuel mass involved in the
experiment. Results in
"skewed/erroneous
scientific results. | None. | will not be consistent with
mass flow rate measured by | MFC1 calibration drift, incorrect calibration, or failure to calibrate.2. IOP/crew will not enable ignition: will fault isolate to MFC1. Recalibrate, or remove and replace. | | | | | FOMA-01-39: Reads a mass flow that is lower than actual | 3 | None. | Incorrect measurement of
the total fuel/pre-mixed
fuel mass involved in the
experiment. Results in
"skewed/erroneous
scientific results. | None. | will not be consistent with
mass flow rate measured by | 1. MFC1 calibration drift, incorrect calibration, or failure to calibrate.2. IOP/crew will not enable ignition: will fault isolate to MFC1. Recalibrate, or remove and replace. | | | | | FOMA-01-40: Allows
too much flow | 3 | Flow output is greater than set-point. Internal control valve tries to close. | Incorrect gas mixture in
the combustion chamber
results in "skewed" or
eroneous scientific
results. | None | PT 25,28 and 29 will indicate a pressure that is much higher than expected for the correct mass flow rate. TE=3-5 minutes, TD = 5 minutes. | Internal valve sticks from corrosion or contam-ination. 2. IOP/Crew will not enable ignition. Will fault isolate to MFC1. Will remove and replace. | | | | | FOMA-01-41: Allows
too little flow | 3 | Flow output is less than set-point. Internal control valve tries to open. | Incorrect gas mixture in
the combustion chamber
results in "skewed" or
eroneous scientific
results. | None | PT 25,28 and 29 will indicate a pressure that is much lower than expected for the correct mass flow rate. TE=3-5 minutes, TD = 5 minutes. | Internal solenoid valve fails to open or opens only partially due to burned out or damaged coil.2.IOP/Crew will not enable ignition. Will fault isolate to MFC1. Will remove and replace. | | | | | FOMA-01-42:
Intermittent Flow | 3 | cycled output of mass
flow controller | Incorrect gas mixture in
the combustion chamber
results in "skewed" or
eroneous scientific
results. | None | with the correct mass flow | 1. Internal solenoid valve operates intermittently due to open circuit or coil damage. 2.IOP/Crew will not enable ignition. Will fault isolate to MFC1. Will remove and replace. | | Item | Sche-matic
ID | Function | Failure Mode and
Failure Mode
Number | Crit. | Local Effect | System Effect | Station/Crew
Effects | Detection Method/
Time-to-Effect=TE
/Time-to-Detect=TD | 1.Potential Causes and 2.
Compensating Provision | |------------------|------------------|---|---|-------|---|---|---|--|--| | | | | FOMA-01-43: External
Leakage | 1R | Release of flammable
gas into an air filled
environment. | Loss of premixed fuel gas
needed for experiment
leading to incorrect gas
mixture in chamber. | 2.anomalous | agree with the correct mass flow rate. TE=3 -5 minutes, | Broken or cracked seals caused by changes in temperature or by
vibration/shock induced impact. SIOP/Crew will not enable ignition. Will fault isolate to MFC1. Will remove and replace | | | | | FOMA-01-43-1:
Intermittent readings of
mass flow data | 3 | None. | Incorrect measurement of the total fuel/pre-mixed fuel mass involved in the experiment. Results in "skewed'/erroneous scientific results. | | will not be consistent with
mass flow rate measured by | 1. Intermittent internal circuit connection due to damage or chemical action from contamination. 2.IOP/crew will not enable ignition: will fault isolate to MFC1. Re-calibrate, or remove and replace. | | | | | FOMA-01-43-2:
electrical- Short | | Internal solenoid Valve will not respond to software command.Unexpected valve closure. | Unable to continue testing.Loss of test point. | None. | Pressure transducer signal and software diagnostic. TE is immediate. TD = 3-5 min. | 1. Solenoid coil insulation damage, damage to solenoid wiring, or damaged relay. 2. Remove and replace defective coil, wiring, or relay, or remove and replace mass flow controller. | | Vacuum
Switch | | Resets timers which
will enable solenoid
valves to open on
command and start
fuel/pre-mixed fuel gas
flow operation. | FOMA-01-44: Fails to reset timers. | | Timers are not reset and solenoid valves SV7 and 8 are not enabled and cannot open. | Cannot provide gas to combustion chamber for burn. Stops experiment. | None. | IOP/FCU will not get "hand-shake" signal to confirm that timers have been reset. TE < 1 minute. TD = 3-5 min. | 1.Internal contamination or corrosion leading to short, arcin g, and then open circuit.2.Remove and replace vacuum switch | | | | | FOMA-01-45:
Uncontrolled and
repeated resets | | worst case: Allows timer
to be reset a number of
times during a fill
operation | Defeats a safety inhibit
for controlling gas flow
time. | Under anamolous
pressure conditions in the
chamber, failure to inhibi
gas flow may contribute
to a over-pressurization
hazard. | IOP/FCU would get repeated "hand-shake" signal to indicate that timers have been reset. TE < 1 minute. TD = 3-5 min. | I.Internal contamination or corrosion leading to shorting. Remove and replace vacuum switch | | Item | Sche-matic | Function | | Crit. | Local Effect | System Effect | Station/Crew | Detection Method/ | 1.Potential Causes and 2. | |--------|------------|--------------|---|-------|--|--|---|---|---| | | ID | | Failure Mode
Number | | | | Effects | Time-to-Effect=TE /Time-to-Detect=TD | Compensating Provision | | Timers | | chamber from | FOMA-01-46: Timer fails to re-set to a new count level after counting down to zero. | 3 | Solenoids SV7 and SV8 cannot open. | Cannot provide gas to combustion chamber for burn. Stops experiment. | none | IOP/FCU will not get "hand-shake" signal to confirm that timers have been reset. TE < 1 minute. TD = 3-5 min. | 1.Internal contamination, or over-
temperature condition causing
shorting, arcing, and damage on
micro-controller, relay, or crystal
oscillator, leading to open circuit.
2.Fault Isolate to timers. Remove
and replace timers. | | | | | FOMA-01-47: Timer sends early signal to close solenoid valves. | 3 | | Incorrect test conditions. Ignition may provide scientific data that is skewed or inaccurate. | None | signal that timer has closed | 1.Internal contamination, or over-
temperature condition on micro-
controller, relay, or crystal
oscillator, causing a short. 2.Fault
Isolate to timers. Remove and
replace timers. | | | | | FOMA-01-48: Timer
sends late signal to
close solenoid valves | 1R | worst case: safety inhibit
is defeated when
needed. | worst case: Fuel mass
transferred to chamber
exceeds specified limit.
Incorrect test
conditions. Ignition may
provide scientific data
that is skewed or
inaccurate. | Under anomalous
pressure and fuel-to-
oxy gen ratio, a hazard
may be created during
ignition. | IOP/FCU will receive late signal that timer has closed solenoid valves on the line. TE < 1 minute. TD = 3-5 min. | 1.Internal contamination, or over-
temperature condition on micro-
controller, relay, or crystal
oscillator, causing a intermittent
open circuit. 2.Fault Isolate to
timers. Remove and replace timers. | | | | | FOMA-01-49:
Uncontrolled and
spontaneous resets. | 1R | worst case: safety inhibit
is defeated. Timer keeps
re-setting so flow time is
not limited. | transferred to chamber | Under anomalous
pressure and fuel-to-
oxygen ratio, a hazard
may be created during
ignition. | IOP/FCU will receive
multiple signals indicating
that timer has reset. TE < 1
minute. TD = 3-5 min. | I.Internal contamination, or over-
temperature condition on micro-
controller, relay, or crystal
oscillator, causing intermittent
shorts. 2.Fault Isolate to timers. Remove and replace timers. | | | | | FOMA-01-49-1:
Overheating | 1R | | transferred to chamber | Under anomalous
pressure and fuel-to-
oxygen ratio, a hazard
may be created during
ignition. | IOP/FCU will receive intermittent, distrorted /noisy, or NO signal indicating that timer has failed. TE < 1 minute. TD = 3-5 min. | Internal electronic components of timer are not rated for operational voltages, currents, and ambient temperatures. 2.Defective Timer would have to be removed and replaced with a spare. | | Item | Sche-matic
ID | Function | Failure Mode and
Failure Mode
Number | Crit. | Local Effect | System Effect | Station/Crew
Effects | Detection Method/
Time-to-Effect=TE
/Time-to-Detect=TD | 1.Potential Causes and 2.
Compensating Provision | |----------------|------------------|--|---|-------|---|--|--|---|--| | | | | FOMA-01-49-2:
Electrical Short | | worst case: Electrical
short internally damages
timer and causes timer
to fail. Safety inhibit is
defeated when needed. | worst case: Fuel mass
transferred to chamber
exceeds specified limit.
Incorrect test
conditions. Ignition may
provide scientific data
that is skewed or
inaccurate. | Under anomalous
pressure and fuel-to-
oxygen ratio, a hazard
may be created during
ignition. | IOP/FCU will receive intermittent, distrorted /noisy, or NO signal indicating that timer has failed. TE < 1 minute. TD = 3-5 min. | I.Internal contamination, or over-
temperature condition on micro-
controller, relay, or crystal
oscillator, causing intermittent
shorts. 2.Fault Isolate to timers.
Remove and replace timers. | | Thermisto
r | TM-5 | Temperature
monitoring of fuel/ pre-
mix fuel manifold | FOMA-01-50:
Measurement Drift:
Measurement indicates
a temperature that is
higher than actual | 3 | None. | loss of temperature monitoring capability. | No direct affect on
station/crew but provides
incorrect data in the event
of some temperature
anomaly. | Temperature measure-ment
will not be consistent with
all other indications from
other sensors. TE and TD
are indeterminate. | Thermal cycles which cause cracks, drifting in resistance, and measurement drift.2. May elect no action or removal and replacement. | | | | | FOMA-01-51:
Measurement Drift:
Measurement indicates
a temperature that is
lower than actual | 3 | None. | loss of temperature
monitoring capability. | No direct affect on station/crew but provides incorrect data in the event of some temperature anomaly. | Temperature measure-ment will not be consistent with all other indications from other sensors. TE and TD are indeterminate. | Thermal cycles which cause cracks, drifting in resistance, and measurement drift.2. May elect no action or removal and replacement. | | | | | FOMA-01-52:No output | 3 | None. | loss of temperature
monitoring capability. | No direct affect on station/crew but provides incorrect data in the event of some temperature anomaly. | Loss of temperature data.
No signal. TE and TD are
indeterminate. | 1.Electrical overstress, moisture intrusion, open circuit resulting from internal damage. 2. Can remove and replace thermistors. | | | | | FOMA-01-53:
overheating | 3 |
None. | loss of temperature
monitoring capability. | No direct affect on station/crew but provides incorrect data in the event of some temperature anomaly. | Loss of temperature data.
No signal. TE and TD are
indeterminate. | 1.Electrical overstress 2. Can remove and replace thermistors. | | | | | FOMA-01-54:
Electrical short | 3 | None. | loss of temperature monitoring capability. | No direct affect on station/crew but provides incorrect data in the event of some temperature anomaly. | Loss of temperature data.
No signal. TE and TD are
indeterminate. | Not rated for oper-ating voltage /currents, deteriorated insulation, moisture, or chemical contamination Can remove and replace thermistors. | # TABLE II. FMEA WORKSHEET FOR THE FOMA Nitrogen Supply Manifold *MIL-STD-1522A test requirement modified as per NSTS 1700.7B paragraph 208.4. | Item | Function | Failure mode
No. | Failure
Mode | Crit. | Local Effect | System Effect | Station/Crew
Effects | Potential Causes | Detection Method/Time to Effect = TE, Time to Detect = TD | Compensating
Provision | |---|--|---------------------|---|--|---|---|-------------------------|---|--|--| | Nitrogen supply | | FOMA-02 | | | | | | | | | | Quick Disconnect:
GN2 supply from
space station | Transfer of N2 | FOMA-02-1 | Fails to allow correct connection. | 2R | Cannot open GN2
manual valve if
we know N2
leakage is
possible. Loss of
function. (N2
flow) | Cannot access
N2 supply from
space station.
Loss of test
points. | TBD | Corrosion,
premature wear,
galling. | Visual and immediate effect. TE = TDB TD = TBD | Maintenance
/replacement of
quick disconnect
required. | | GN2 Supply
Manual Valve | Manual control of N2 flow out from space station supply. | FOMA-02-3 | Valve fails
closed. (stuck
in closed
position) | 2R | Inability to
manually turn on
N2 flow from
space station
supply. | Loss of ability to
provide N2 from
space station
supply to
Chamber. Loss
of certain test
points. | TBD | Contamination and Corrosion. | Transducers
show no/little
pressure
TE = TDB
TD = TBD | Must be able to remove failed valve and replace it or conduct other experiments using the Diluent/ premixed gas supply manifold. | | GN2 Supply
Manual Valve | Manual control of N2 flow out from space station supply. | FOMA-02-4 | Valve
Leakage | 1R Note: SSP 57025 limits the flow rate and atmosphere will be checked for high N2/low O2. We will check before opening rack with monitor. | Loss of N2 from space station supply. N2 leakage into cabin constitutes a hazard. Worst case- The N2 could fill the cabin forming a oxygen depleted zone. | Incorrect amount of N2 added to mixture in combustion chamber. If burn were to take place, scientific data could be flawed since burn took place with incorrect fraction of N2. | TBD | Contamination,
Corrosion, or
galling. | Transducers show reduced pressure from what is expected. TE = TDB TD = TBD | Shut down fill operation. Remove and replace faulty manual valve. Exhaust, clean, and vent the faulty gas mixture in the chamber. Re-fill and implement intended experiment. | | Item | Function | Failure mode
No. | Failure
Mode | Crit. | Local Effect | System Effect | Station/Crew
Effects | Potential Causes | Detection Method/Time to Effect = TE, Time to Detect = TD | Compensating
Provision | |------------------------------|---|---------------------|--|-------|---|--|-------------------------|---|---|---| | GN2 Supply
Space Station | Provide N2
as
Diluent for
combustion
experiments | FOMA-02-5 | Provides
contaminated
supply | 2R | Contaminated N2
may be passed on
to chamber | Faulty scientific
data as a result
of
burns containing
contaminants | TBD | N2 supply from
space station did
not meet
contamination
control
requirements. | Faulty
scientific data.
TE = T DB
TD = TBD | F4 Provides Filtering
of N2
carried in line. | | Flexible Hose | Transfer of
N2
from space
station QD to
QD4. | FOMA-02-6 | Cracked and
Leaking | 1R | Loss of N2 from
space station
supply. The N2
could fill the
cabin forming a
oxygen depleted
zone. | Incorrect amount of N2 added to mixture in chamber. If burn were to take place, scientific data could be flawed since burn took place with incorrect fraction of N2. | TBD | Deterioration
related to chemical
action,
premature wear,
undetected damage
or weakness. | Transducers
show
reduced
pressure from
what is
expected.
TE = TDB
TD = TBD | Shut down N2. Removal & replacement of defective flexible hose OR conduct other experiments using the Diluent/ premixed gas supply manifold. | | Quick Disconnect
QD4 | Transfer of N2 from space station supply to Nitrogen/Hig h Pressure Supply Manifold. | FOMA-02-7 | Fails to allow correct connection. | 2R | Cannot open GN2
manual valve if
we know N2
leakage is
possible. Loss of
function. (N2
flow) | Cannot access
N2 supply from
space station.
Loss of test
points. | TBD | Corrosion,
premature wear,
galling | Visual and immediate effect. TE = TDB TD = TBD | Removal and
replacement of
quick disconnect
required. Conduct
other experiments
using the Diluent/
premixed gas supply
manifold. | | PI4
Pressure
Indicator | To provide indication to crew that pressure at QD4 is low enough to permit demate at QD4. | FOMA-02-8 | Indicates a
pressure
that is higher
than actual | 3 | Provides incorrect
data to
the crew | Timing of QD4
demate will be
questioned. | TBD | Spring performance incorrect. | PT10 Transducer reading relayed to crew by computer. Comparison with PI4. TE = TDB TD = TBD | Transducer would indicate true pressure. Crew would be informed that it is safe to disconnect QD4. Remove and replace faulty pressure indicator. | | Item | Function | Failure mode
No. | Failure
Mode | Crit. | Local Effect | System Effect | Station/Crew
Effects | Potential Causes | Detection Method/Time to Effect = TE, Time to Detect = TD | Compensating
Provision | |--------------------------------|---|---------------------|--|--|--|---|-------------------------|--|--|---| | PI4
Pressure Indicator | To provide indication to crew that pressure at QD4 is low enough to permit demate at QD4. | FOMA-02-9 | Indicates a pressure that is lower than actual. | 1R | Provides incorrect data to crew. | May not be able to disconnect QD4. Disconnection could result in N2 leakage. | TBD | Spring performance incorrect. | PT10 Transducer reading relayed to crew by computer. Comparison with P14 reading. TE = TDB TD = TBD | The QDs are self
sealing. If they were
able to be
disconnected, they
would not
Leak significant
N2. | | PI4
Pressure Indicator | To provide indication to crew that pressure at QD4 is low enough to permit demate. | FOMA-02-10 | No indication.
PI 4
inoperative. | 1R | Provides no data
to crew | May not be able to disconnect QD4. Disconnection could result in N2 leakage. | TBD | Broken internal spring. | PT 10 Transducer reading relayed to crew by computer. TE = TDB TD = TBD | PT10 pressure
transducer would
provide a monitoring
of input pressure.
Would indicate if
QD4 can be safely
disconnected. | | PT10
Pressure
Transducer | Provides an exact measurement of pressure | FOMA-02-11. | Indicates a
pressure
that is higher
than actual | 2R | Provides incorrect
data
to
computer and/or
crew | Could conceivably cause computer to shut down gas supply and lose some test points. | TBD | Performance drifts out of specification. | Data from
other Pressure
transducers on
the line would
contradict
PT10.
TE = TDB
TD = TBD | Remove and replace
faulty transducer.
Would need a
procedure to re-open
valves and clear
erroneous data from
computer to re-start
fill
operation. | | PT10
Pressure Transducer | Provides an exact measurement of pressure | FOMA-02-12. | Indicates a pressure that is lower than actual. | 1R
Pressure
from
station
supply
Limited to
120psi.=
chamber
MDP. | Provides incorrect data to computer and/or crew. | N2 pressure in line could build up without crew knowledge in the event that PI 4 has failed. Possible Hazard. | TBD | Performance drifts out of specification. | Data from
other Pressure
transducers on
the line would
contradict
PT10.
TE = TDB
TD = TBD | Remove and replace
the faulty PT 10.
Would need a
procedure to re-open
valves and clear
erroneous data from
computer to re-start
fill
operation. | | Item | Function | Failure mode
No. | Failure
Mode | Crit. | Local Effect | System Effect | Station/Crew
Effects | Potential Causes | Detection Method/Time to Effect = TE, Time to Detect = TD | Compensating
Provision | | PT10
Pressure Transducer | Provides an exact measurement of pressure | FOMA-02-13. | No output.
PT 10
inoperative. | 1R | Provides NO data
to computer
and/or crew. | N2 pressure in
line could build
up without crew
knowledge in the
event that PI 4
has failed.
Possible Hazard. | TBD | Loss of
signal. May be
caused by open-
circuit failure. | Data from
other Pressure
transducers on
the line would
contradict
PT10.
TE = TDB
TD = TBD | Remove and replace
the faulty PT 10.
Would need a
procedure to re-open
valves and clear
erroneous data from
computer to re-start
fill
operation. | |----------------------------------|--|-------------|-------------------------------------|-----|--|---|-----|---|--|---| | F4
Filter | Provides
Filtering of
gas
transferred
through line | FOMA-02-15. | fails | 3 | Contaminants are passed on through the line in small amounts. | Some inaccuracy
in scientific data
as a result of
burns containing
small
contaminants | TBD | Partial damage | "Skewed" data
or inaccuracies
may initiate
trouble-
shooting
TE = TDB
TD = TBD | Filter is replaceable.
Exhaust, clean, vent,
and re-fill. | | F4
Filter | Provides
Filtering of
gas
transferred
through line | FOMA-02-16. | fails | 2R | Stops or greatly
reduces gas flow
to mass-flow
controller | Could affect fill
time for
combustion
chamber | TBD | Large size
contamination
and/or debris inside
filter | Troubleshootin
g procedure for
FOMA-02
TE = TDB
TD = TBD | Filter is replaceable. Can also run other experiments using diluent/premixed gas supply manifold. | | SV13,12, or 2
Solenoid Valves | Control of
N2
flow
(pressure) | FOMA-02-17 | fails | 2 R | Inability to provide N2 gas for experiments | Loss of test
points.
Would have to
switch over to
diluent/premixed
gas supply
manifold. | TBD | Coil Burn out.
(may be caused by
premature wear of
coil) | Current draw feedback monitored by computer, pressure transducers indication downstream. TE = TDB TD = TBD | Design of Solenoid
Valves is
maintainable:
Defective coils can be
removed and replaced
with spare coil. Can
also run other
experiments using
diluent/premixed gas
supply manifold. | | SV13,12, or 2
Solenoid Valves | Control of
N2
flow
(pressure) | FOMA-02-18 | fails | 1R | Allows N2 flow
to reduced level
when shut down
is intended. | Could be a contributing cause to a hazard. | TBD | Large Debris or excessive contamination on seat. | Pressure
transducers
indication
downstream.
TE = TDB
TD = TBD | Design of Solenoid
Valves is
maintainable:
If valve will not
close due to failure,
entire valve can be re-
moved and replaced. | | Item | Function | Failure mode
No. | Failure
Mode | Crit. | Local Effect | System Effect | Station/Crew
Effects | Potential Causes | Detection Method/Time to Effect = TE, Time to Detect = TD | Compensating
Provision | |---------------------------------|---|---------------------|-----------------|--|---|---|-------------------------|---|--|--| | SV13,12, or 2
Solenoid Valve | Control of
N2
flow
(pressure) | FOMA-02-19 | fails | 1R Note: If a leak is strongly suspected from other observation s, the experiment would be shut down and Leak checks would be performed. | N2 leakage into cabin constitutes a hazard. Worst case- The N2 could fill the cabin forming a oxygen depleted zone. | Detection of leak may necessitate system shutdown. Non-detection of leak may result in oxygen depletion threat in the worst case. Inability to perform experiments. | TBD | Broken seals, cracked seals, caused by in herent design weakness like sensitivity to changes in temperature or vibration. | Pressure
transducers
downstream
like PT 15,28,
and 29
would indicate
low
pressure
TE = TDB
TD = TBD | Design of Solenoid
Valves is
maintainable:
If valve is leaking,
due to seal failure,
entire valve can be
removed and replaced.
External GN2 manual
valve would be shut
immediately. | | PR 4
Pressure
Regulator | Regulate N2
gas pressure
from 2000
PSI to 120-
140 PSI. | FOMA-02-20 | fails | 1R | Buildup of
pressure in gas
line. Possible
over-
pressurization | Detection of
over-pressure
condition by
pressure switch
PS 4 will shut
solenoid valves
on line. | TBD | Loss of initial setting. Loose internal parts from launch vibe. | PT 11, and 12
would measure
over pressure.
TE = TDB
TD = TBD | Any pressure over
specified amount for
ex-periment and all
solenoids shut.
Pressure regulator can
be replaced. | | PR4 Pressure
Regulator | Regulate N2
gas pressure
from 2000
PSI to 120-
140 PSI. | FOMA-02-21 | fails | 2R | Reduction of flow
rate to mass flow
controller. | Delay of test
points. If
regulator
has failed would
have to switch
over to
diluent/premixed
gas supply
manifold until
regulator could
be removed and
replaced. | TBD | Loss of initial setting. Loose internal parts from launch vibe | PT 11, and 12
would measure
low pressure.
TE = TDB
TD = TBD | Re-set pressure
regulator. Second
failure may
necessitate removal
and replacement. | | Item | Function | Failure mode
No. | Failure
Mode | Crit. | Local Effect | System Effect | Station/Crew
Effects | Potential Causes | Detection Method/Time to Effect = TE, Time to Detect = TD | Compensating
Provision | |--------------------------------|--|---------------------|-----------------|-------|---|--|-------------------------|---|---|--| | PT 27
Pressure Transducer | Provides an exact measurement of pressure across the diaphragm. Used to detect diaphragm rupture. | FOMA-02-22 | fails | 2R | Provides incorrect
data to
computer and/or
crew | Inability to
detect
rupture of
pressure
regulator
diaphragm. | TBD | Leaking, loss of signal, performance drifts out of spec. | Data from other Pressure transducers on the line would contradict PT27. TE = TDB TD = TBD | PT27 reading a lower pressure would indicate a detection failure of the pressure transducer and this item would be replaced. | | PT27
Pressure
Transducer | Provides an exact
measurement of pressure across the diaphragm. Used to detect diaphragm pressure. | FOMA-02-23 | fails | 2R | Provides incorrect
data to
computer and/or
crew. | Could conceivably cause computer to command solenoid valves to close and shut off N2 supply. | TBD | Leaking, loss of signal, performance drifts out of spec. | Data from other Pressure transducers on the line would contradict PT27. TE = TDB TD = TBD | Would replace PT 27. If problem persisted, then PR 4 would be replaced. | | PT27
Pressure
Transducer | Provides an exact measurement of pressure across the diaphragm. Used to detect diaphragm rupture. | FOMA-02-24 | fails | 2 | Provides NO data
to computer
and/or crew. | Inability to detect rupture of pressure regulator diaphragm. | TBD | Leaking, loss of signal, performance drifts out of spec. May be caused by open-circuit failure. | Data from other Pressure transducers on the line would contradict PT27. TE = TDB TD = TBD | Would need a procedure to replace PT27. Re-open valves and clear erroneous data from IOP to re-start fill operation. | | Item | Function | Failure mode
No. | Failure
Mode | Crit. | Local Effect | System Effect | Station/Crew
Effects | Potential Causes | Detection
Method/Time
to Effect = TE,
Time to Detect
= TD | Compensating
Provision | |---------------------------------------|---|---------------------|-----------------|-------|---|---|-------------------------|--|---|--| | PS4
Pressure
Switch | Would provide computer the capability to shut solenoid valves if pressure downstream of PR4 exceedsPSI. | FOMA-02-25 | fails | 1R | Buildup of N2
pressure in gas
line. Possible
over-
pressurization.
Reliance now on
PT11 to shut
solenoid valves. | May allow gas
pressure on line
to build up and
presents a hazard
in the event of
PT 11 failure.
Threat of
possible
over-
pressurization. | TBD | Leaking, loss of
signal, performance
drifts out of spec. | Data from Pressure transducers on the line would indicate loss of pressure control. TE = TDB TD = TBD | Would need a
procedure to re-
place PS4. The
pressure regulator and
PT/computer are
back up. | | PT11,PT12
Pressure
Transducers | Provides an exact measurement of pressure | FOMA-02-26 | fails | 1R | Provides incorrect
data to
computer and/or
crew | Could
conceivably
allow build up of
pressure on line
without crew
knowledge.
Possible Hazard | TBD | Leaking, loss of
signal, performance
drifts out of spec. | PT 15, 28, & 29 readings will not be consistent with PT 11 or 12. TE = TDB TD = TBD | Would need a
procedure to re-
place PT11 or 12. Re-
open valves and clear
erroneous data from
IOP to re-start fill. | | PT11,PT12
Pressure
Transducers | Provides an exact measurement of pressure | FOMA-02-27 | fails | 2R | Provides incorrect
data to
computer and/or
crew | Could conceivably cause computer to command solenoid valves to close and shut off gas supply. | TBD | Leaking, loss of
signal, performance
drifts out of spec. | PT 15, 28, & 29 readings will not be consistent with PT 11 or PT12. TE = TDB TD = TBD | Would need a
procedure to re-
place PT11 or 12. Re-
open valves and clear
erroneous data from
IOP to re-start fill
operation | | PT11, PT12
Pressure
Transducers | Provides an exact measurement of pressure | FOMA-02-28 | fails | 1R | Provides NO data
to computer
and/or crew. | Gas pressure in
line could build
up without crew
knowledge | TBD | Loss of signal caused by open-circuit failure. | PT 15, 28, & 29 readings will not be consistent with PT 11 & 12. TE = TDB TD = TBD | Would need a procedure to replace I/O card in the FCU and/or PT11 & 12. Re-open valves and clear erroneous data from IOP to restart fill operation | | Item | Function | Failure mode
No. | Failure
Mode | Crit. | Local Effect | System Effect | Station/Crew
Effects | Potential Causes | Detection Method/Time to Effect = TE, Time to Detect = TD | Compensating
Provision | |----------------------------|---|---------------------|-----------------|-------|--|---|-------------------------|---|--|---| | MFC4: Mass flow controller | Meters mass
flow of N2
gas to
combustion
chamber for
experiments | FOMA-02-29 | fails | 2R | Flow output is greater than set -point. Control valve tries to close. | Incorrect test conditions due to incorrect gas flow. Mass of N2 gas in chamber may exceed requirement for test point. Over pressurization still controlled by regulator, pressure switch and PT/computer. | TBD | 1.Internal control valve coil does not electrically respond or does not respond correctly to closure signal. 2.Internal valve has corrosion or contamination. | PT 15, 28, & 29 readings will indicate rapid build-up of pressure. TE = TDB TD = TBD | N2 content will be checked. IOP & crew will not enable ignition. Fault Isolate to MFC4 and replace MFC4. Over pressur-ization controlled by PS4, PR4, and PT/computer | | MFC4: Mass flow controller | Meters mass
flow of N2
gas to
combustion
chamber for
experiments | FOMA-02-30 | fails | 1R | Flow output is
less than set
point. Control
valve tries to
open. | Too little N2
could cause a
high fuel –
O2 mixture.
Possible Hazard. | TBD | Internal solenoid
fails to open/ will
not open com-
pletely. (Burned
out or damaged
coil.) | PT 15, 28, &
29 readings
will indicate
pressure is too
low.
TE = TDB
TD = TBD | N2 mixture ratio will
be verified. IOP &
crew will hold up
ignition.
Fault Isolate to MFC4
and replace MFC4. | | MFC4: Mass flow controller | Meters mass
flow of N2
gas to
combustion
chamber for
experiments | FOMA-02-31 | fails | 2R | Principle Investigator stationed on ground, may not notice that values are too high. | Could lead to incorrect measure-ment of the total N2-mass involved in experiment. PI would get skewed scientific results. Switch over to experiments using diluent /pre-mixed gas supply manifold. | TBD | MFC calibrated incorrectly, or not calibrated. MFC output drifts out of specification. MFC damaged by launch vibe. | PT 15, 28, & 29 readings will indicate expected pressure in line and will not agree with MFC4. TE = TDB TD = TBD | N2 mixture ratio will
be verified. IOP &
crew will not enable
ignition. Fault Isolate
to MFC4 . Re-
calibrate MFC4 or
remove and replace
MFC4. | | Item | Function | Failure mode
No. | Failure
Mode | Crit. | Local Effect | System Effect | Station/Crew
Effects | Potential Causes | Detection Method/Time to Effect = TE, Time to Detect = TD | Compensating
Provision | |----------------------------|--|---------------------|-----------------|-------|---|--|-------------------------|--|---|--| | MFC4: Mass flow controller | Meters mass
flow of N2
gas to
combustion
chamber for
experiments | FOMA-02-32 | fails | 2R | Principle Investigator stationed on ground, may not notice that values are too low. | Could lead to incorrect measure-ment of the total N2-mass involved in experiment. PI would get skewed scientific results. Switch over to experiments using Diluent Premixed gas supply manifold. | TBD | MFC calibrated incorrectly, or not calibrated. MFC output drifts out of specification. MFC damaged by launch vibe. | PT 15, 28, & 29 readings will indicate expected pressure and will not agree with MFC4. TE = TDB TD = TBD | IOP & crew will not
enable ignition. Fault
Isolate to MFC4. Re-
calibrate MFC4 or
remove and replace
manifold. | | MFC4: Mass flow controller | Meters mass
flow of
N2
gas to
combustion
chamber for
experiments | FOMA-02-33 | fails | 2R | PT 15, 26, and 27 read low pressure. | Unable to perform experiment without N2. Cannot start ignition. Would have to initiate fault isolation or switch over to experiments using Diluent/Premixe d gas supply manifold. | TBD | Internal solenoid
will not open due
to a burned out or
damaged coil. | Pressure transducers upstream of MFC4 read positive pressure but readings downstream show little or no pressure. TE = TDB TD = TBD | IOP & crew will not
attempt ign ition. Will
Fault Isolate to
MFC4. Remove
faulty MFC4 and
replace with good
Mass flow
controller. | | Check Valve
CV8. | Prevents gases from other manifolds from back- flushing into the N2 high pressure supply manifold. | FOMA-02-34 | fails | 2R | Loss of protection
from
back-flushing
effect. | WC: May necessitate shutdown of Nitrogen/High Pressure Manifold. Switch over to use of the Diluent Premixed gas supply manifold. | TBD | Large Debris or
excessive
contamination on
seat. | An unexpected rise in pressure would be detected by PT 12. TE = TDB TD = TBD | IOP & crew will not
attempt ignition. Will
Fault Isolate to
timers. The primary
control of the fuel
amount is the MFC1. | | Item | Function | Failure mode
No. | Failure
Mode | Crit. | Local Effect | System Effect | Station/Crew
Effects | Potential Causes | Detection Method/Time to Effect = TE, Time to Detect = TD | Compensating
Provision | |--|--|---------------------|-----------------|-------|---|--|-------------------------|---|--|--| | Check Valve
CV8. | Prevents gases from other manifolds from back- flushing into the N2 high pressure supply manifold. | FOMA-02-35 | fails | 2R | Cannot flow N2 into combustion chamber. | Forced to either
Fault Isolate or
switch over to
experiments that
use the
diluent/pre-
mixed gas
supply manifold. | TBD | Internal failure of
electronics or
mechanical
parts. | PT 15, 28, and
29 report
incorrect
pressure profile
in combustion
chamber.
TE = TDB
TD = TBD | IOP & crew will not
attempt ignition. Will
Fault Isolate to CV8.
May remove and
replace CV8. | | All Connections in-and-out of any components on gas line through N2 high pressure supply manifold. | To transfer N2 through the manifold. | FOMA-02-36 | fails | 1R | N2 leakage into cabin constitutes a hazard. Worst case- The N2 could fill part of the cabin forming a oxygen depleted zone. | Hazardous to crew. Detection of leak may necessitate system shutdown. Non-detection of leak may result in oxygen depletion threat in the worst case. Inability to perform experiments. | TBD | Leaks in components caused by faulty seals, imperfect mating, or damaged connections. | Leaks in components caused by faulty seals, imperfect mating, or damaged connections. All pressure transducer outputs would be monitored. Strict attention to pressure profile curves and pressure readings in combustion chamber. TE = TDB TD = TBD | In the event that instrumentation indicates conditions which could be the result of system leakage, the fill procedure will be terminated and offnominal procedure implemented. This could consist of closing the external GN2 manual valve and power shutdown to FOMA. Pressure decay leak check. Fault Isolate to manifold. Remove and replace manifold. | | PR 4 Pressure
Regulator | Regulate N2
gas pressure. | FOMA-02- 37 | fails | 1R | Loss of N2 gas
needed for
experiments.
Hazard to crew:
oxygen depletion
threat. | Incorrect test
conditions due to
incorrect gas
flow. Ignition
would provide
incorrect
experiment and
data not useful. | TBD | Broken seals , cracked seals caused by inherent weakness. Sensitivity to environment. | PT 11 and 12
would indicate
high pressure.
A hand held
monitor will
also be used.
TE = TDB
TD = TBD | Shutdown manifold.
Remove faulty PR 4
and
replace with spare. | | Item | Function | Failure mode
No. | Failure
Mode | Crit. | Local Effect | System Effect | Station/Crew
Effects | Potential Causes | Detection Method/Time to Effect = TE, Time to Detect = TD | Compensating
Provision | |---|---|---------------------|-----------------|-------|---|--|-------------------------|---|--|---| | Solenoid Valve
SV 28 | Flow control
for auxiliary
high pressure
line. (line to
combustion
chamber
which by -
passes
pressure
regulator) | FOMA-02-38 | fails | 2R | Does NOT allow
N2 to
flow through
auxiliary high
pressure line. | Cannot provide high pressure N2 for high pressure experiments. May continue with other experiments utilizing the normal N2 gas line. | TBD | Coil Burn out.
(may be caused by
premature wear of
coil) | PT 28 and 29
would indicate
lower pressure
than
expected.
TE = TDB
TD = TBD | Shutdown power to
manifold.
Fault Isolation would
be performed to
SV 28. Would remove
SV 28 and replace
with a spare. | | Solenoid Valve
SV 28 | Flow control
for auxiliary
high pressure
line. (line to
combustion
chamber
which by -
passes
pressure
regulator) | FOMA-02-39 | fails | 1R | Allows additional
N2 to
flow through
auxiliary high
pressure line. | Could allow
unlimited N2
flow into
combustion
chamber if
condition is not
detected and
SV20 does not
shutdown flow. | TBD | Large Debris or
excessive
contamination on
seat. | PT 28 and 29
would indicate
higher pressure
than
expected.
TE = TDB
TD = TBD | Send closure signal to SV20. Shutdown power to manifold. Complete Off-nominal procedure for this situation. | | Quick Disconnect:
GN2 supply from
space station | Transfer of N2 | FOMA-02-40 | fails | 1R | N2 leakage into cabin constitutes a hazard. Worst case- The N2 could fill the cabin forming a oxygen depleted zone. | Detection of leak may necessitate system shutdown. Non-detection of leak may result in oxygen depletion threat in the worst case. Inability to perform experiments | TBD | Corrosion, premature wear. Galling | In the more severe case, Pressure transducers may show loss of pressure. In less severe cases (small leak) this failure may go undetected. TE = TDB TD = TBD | Replacement of the Quick disconnect may be required. | | GN2 Supply Manual valve | Manual
control of
N2 flow out
of space
station
supply | FOMA-02-41 | fails | 18 | Inability to
manually shut
down N2 flow at
Source point. | Inability to shut
down N2 input
flow at the
source in the
event of an
emergency. | TBD | Corrosion, pre-
mature wear.
Galling | Pressure
transducers
would read no
reduction in
line pressure
TE = TDB
TD = TBD | Space station
crew/computers
would have to shut
down N2 flow
upstream of the
manual valve. | | Item | Function | Failure mode
No. | Failure
Mode | Crit. | Local Effe ct | System Effect | Station/Crew
Effects | Potential Causes | Detection Method/Time to Effect = TE, Time to Detect = TD | Compensating
Provision | |---|----------------|---------------------|-----------------|-------|--|--|-------------------------|---------------------------|---|---------------------------| | Quick Disconnect:
GN2 supply from
space station | Transfer of N2 | FOMA-02-42 | fails | 3 | Cannot
disconnect from
Station N2
supply line | Cannot
disconnect from
Station N2
supply line | TBD | Damage to QD by vibration | Visual
TE = TDB
TD = TBD | TBD | # TABLE III. FMEA WORKSHEET FOR THE FOMA Diluent Gas Supply Manifold | Package and
Failure mode
No. | Item | modified as per NS
Function | Failure
Mode | Crit | Local Effect | System Effect | Station /Crew
Effects | Potential
Causes | Detection
Method | Compensating
Provision | |------------------------------------|------------------------|---|--|------|---|---|--------------------------|--|--|--| | FOMA-03 | Diluent
Supply | | | | | | | | | | | FOMA-03-1 | GB3
Gas Bottle | Storage of diluent / premixed gas | Burst
(rupture of
cylinder) | 1 | Loss of diluent pre-mixed gas. Possible damage to surrounding FOMA. | Loss of test points requiring GB3. Hazard to crew: Release of flammable and/or toxic gas. Possible ejection of projectiles. | TBD | Structural Failure. Stress cracking due to pressure loads, launch environment, or thermal gradients. | Visual, immediate effects. (This structural failure is intolerable and must be avoided.) | GB2 designed for: LBB, tested as per MIL-STD 1522A* with positive margin of safety on burst/MDP and FS requirements. | | FOMA-03-2 | GB3 Gas
Bottle | Storage of diluent / premixed gas | Leakage | 1R | Loss of diluent pre-mixed gas. | Hazard to crew:
Release of
flammable and/or
toxic gas. | | See above | See Above | Proof tests. | | FOMA-03-3 | MV3
Manual
Valve | Manual control
of gas flow out
from GB3 | Valve fails
open. (stuck
in
open
position) | 1R | Inability to
manually cut-off
flow from GB-3 | Inability to
manually shut off
supply from GB3
in an emergency | TBD | Corrosion or Contamination. | Pressure
Transducers
show pressure
increase. | Fuel can be
diluted in
chamber and
vented prior to
bottle removal. | | FOMA-03-4 | MV3
Manual
Valve | Manual control
of gas flow out
from GB3 | Valve fails
closed.
(stuck in
closed
position) | 1 R | Inability to
manually turn on
supply from GB3 | Loss of ability to
provide gas
supply from GB3
to Chamber. Loss
of certain test
points. | TBD | Contamination and Corrosion. | Transducers
show no/little
pressure | Remove GB3
and replace
with
new bottle. | | Package and
Failure mode
No. | Item | Function | Failure
Mode | Crit | Local Effect | System Effect | Station /Crew
Effects | Potential
Causes | Detection
Method | Compensating
Provision | |------------------------------------|------------------------------|--|--|------|--|--|--------------------------|---|--|--| | FOMA -03-5 | MV3
Manual
Valve | Manual control
of gas flow out
from GB3 | Valve
Leakage | 1R | Loss of diluent or
premixed gas
from GB3. | Loss of test points requiring GB3 supply. Hazard to crew: Release of flammable and/or toxic gas in oxygen. | TBD | Contamination,
Corrosion, or
galling. | Transducers
show no/little
pressure | Shut down fill operation. The amount of gas in the bottle is limited to prevent the rack atmosphere from reaching an unsafe percentage of LEL and from reaching SMAC levels. | | FOMA -03-6 | GB2
Gas bottle | Storage of diluent / premixed gas | Provides
contaminate
d supply | 2R | Contaminated
diluent or
premixed gas
may be passed
on to chamber | Faulty scientific data as a result of burns containing contaminants | TBD | Gas storage bottle did not meet contamination control requirements. | Faulty scientific data. | F3 Provides Filtering of diluent or premixed gas carried in line. | | FOMA -03-7 | QD3
Quick
disconnect | Transfer of diluent / premixed gas | Fails to allow
safe/correct
connection | 2R | Inability to
provide diluent /
premixed gas for
experiments | Loss of Test points. | TBD | Corrosion, premature wear, galling. | Visual and immediate effect. | Maintenance
/replacement of
quick
disconnect
required. | | FOMA -03-8 | PI3
Pressure
Indicator | Indicates
pressure
in order to give
crew an
indication that
gas bottle can
be removed. | Reads a
pressure
that is lower
than actual | 1R | Provides incorrect data to to crew | May not be able to disconnect bottle. Disconnection could propel bottle away from quick disconnect. | TBD | Spring performance incorrect. | PT7 Trans-
ducer reading
relayed to crew
by computer.
Comparison
with PI reading. | Comparison with PT7 pressure transducer would provide a monitoring of bottle pressure. Would indicate if bottle can be safely removed. | | FOMA -03-9 | Pl3
Pressure
Indicator | Indicates
pressure
in order to give
crew an
indication that
gas bottle can
be removed. | Reads a
pressure
that is higher
than actual | 3 | Provides
incorrect data to
the crew | Timing of bottle change out will be questioned. | TBD | Spring performance incorrect. | PT7 Transducer reading relayed to crew by computer. Comparison with PI3. | Transducer
would indicate
true pressure.
Crew would be
informed that it
is safe to
remove the
bottle. | | Package and Failure mode No. | Item | Function | Failure
Mode | Crit | Local Effect | System Effect | Station /Crew
Effects | Potential
Causes | Detection
Method | Compensating
Provision | |------------------------------|-------------------------------|--|--|------|--|--|--------------------------|--|--|---| | FOMA-03-10 | Pl3
Pressure
Indicator | Indicates
pressure
in order to give
crew an
indication that
gas bottle can
be removed. | Fails to
operate.
No reading. | 1R | Provides NO
data to crew | May not be able to disconnect bottle. Disconnection could propel bottle away from quick disconnect. | TBD | Loss of signal. | PT7 Transducer reading relayed to crew by computer. Comparison with PI3 reading. | Comparison with PT7 pressure transducer would provide a monitoring of bottle pressure. Would indicate if bottle can be safely removed. | | FOMA -03-11 | PT7
Pressure
Transducer | Provides an exact measurement of pressure | Reads a
pressure
that is lower
than actual | 1R | Provides
incorrect data to
computer and/or
crew | Could conceivably
allow build up of
pressure on line
without crew
knowledge.
Possible Hazard. | TBD | Leaking, loss of signal, performance drifts out of spec. | Data from other
Pressure
transducers on
the line would
contradict PT7. | PT7 has back-
up
from the
regulator set at
95 psi.,
pressure switch
set at 97 psi.,
and the
pressure
transducer/com
puter-solenoid
at
99 psi. | | FOMA -03-12. | PT7
Pressure
Transducer | Provides an exact measurement of pressure | Reads a
pressure
that is higher
than actual | 2R | Provides
incorrect data to
computer and/or
crew | Could conceivably cause computer to shut down gas supply and los e some test points. | TBD | Performance drifts out of specification. | Data from other
Pressure
transducers on
the line would
contradict PT4. | Would need a procedure to reopen valves and clear erroneous data from computer to re-start fill operation. | | FOMA-03-13. | PT7
Pressure
Transducer | Provides an exact measurement of pressure | Fails to
operate.
No reading. | 1R | Provides NO data to computer and/or crew. | Gas pressure in line could build up without crew knowledge. Possible Hazard. | TBD | Loss of signal. May be caused by open-circuit failure. | Data from other
Pressure
transducers on
the line would
contradict PT7. | PT7 has back-
up
from the
regulator set at
95 psi.,
pressure switch
set at 97 psi.,
and the
pressure
transducer/com
puter-solenoid
at
99 psi. | | Package and Failure mode No. | Item | Function | Failure
Mode | Crit | Local Effect | System Effect | Station /Crew
Effects | Potential
Causes | Detection
Method | Compensating
Provision | |------------------------------|--|---|---------------------------------------|------|---
---|--------------------------|---|--|--| | FOMA -03-14. | F3
Filter | Provides
Filtering of gas
carried in line | Fails to stop
contaminants | 3 | Contaminants
are passed on
through the line. | Faulty data: Burns containing contaminants | TBD | Holes, damage,
or deterioration | Faulty data
may result in
detection | Filter is
replaceable.
Exhaust, clean,
vent, re-fill with
spare bottle | | FOMA-03-15. | F3
Filter | Provides
Filtering of gas
transferred
through line | Fails to stop
some
contaminants | 3 | Contaminants
are passed on
through the line
in small
amounts. | Some inaccuracy in scientific data as a result of burns containing small contaminants | TBD | Partial damage | "Skewed" data
or inaccuracies
may initiate
trouble-
shooting | Filter is replaceable. Exhaust, clean, vent, and re-fill with spare gas bottle. | | FOMA -03-16. | F3
Filter | Provides
Filtering of gas
transferred
through line | Clogged | 3 | Stops or greatly
reduces gas flow
to mass-flow
controller | Could affect fill time for combustion chamber | TBD | Large size
contamination
and/or debris
inside filter | Troubleshootin
g proced-
ure for FOMA -
03 | Filter is replaceable. | | FOMA-03-17 | SV10,9, or
17
Solenoid
Valves | Control of gas
flow (pressure) | Fails to open | 2R | Inability to
provide diluent /
premixed gas for
experiments | Loss of test points. | TBD | Coil Burn out.
(may be caused
by premature
wear of coil) | Current draw feedback monitored by computer, pressure transducers indication downstream. | Design of Solenoid Valves is maintainable: Defective coils can be removed and replaced with spare coil. | | FOMA -03-18 | SV10,9, or
17
Solenoid
Valve | Control of gas
flow (pressure) | Fails to close completely | 1R | Allows gas flow
to reduced level
when shut down
is intended | Could be a contributing cause to a hazard. | TBD | Large Debris or excessive contamination on seat | Pressure
transducers
indication
dow nstream. | Design of Solenoid Valves is maintainable: If valve will not close due to failure, entire valve can be removed and replaced. | | Package and Failure mode No. | Item | Function | Failure
Mode | Crit | Local Effect | System Effect | Station /Crew
Effects | Potential
Causes | Detection
Method | Compensating
Provision | |------------------------------|---------------------------------------|---|--|---|---|---|--------------------------|--|--|--| | FOMA -03-19 | SV10,9, or
17
Solenoid
Valve | Control of gas
flow (pressure) | Leakage to environment | 1R Note: If a leak is confir med, experi ment would be shut down and Leak checks would be perfor med. | Inability to provide diluent / premixed gas for experiments. Hazard to crew: flammability/toxic substance threat. | Detection of leak may necessitate system shutdown. Non-detection of leak may result in a flammability hazard or toxic substance threat. | TBD | Broken seals, cracked seals, caused by inherent design weakness like sensitivity to changes in temperature or vibration. | Pressure
transducers
downstream
like PT 15,28,
and 29
would indicate
low
pressure | Design of Solenoid Valves is maintainable: If valve is leaking, due to seal failure, entire valve can be removed and replaced. Bottle size and amount of gas are selected to avoid flammability/tox ic concerns. | | FOMA-03-20 | PR3
Pressure
Regulator | Regulate diluent / premixed gas pressure from 2000 PSI to 100 PSI. | Fails to
regulate
pressure
down to
specified
100 PSI. | 1R | Buildup of
pressure in gas
line. Possible
over-
pressurization | Detection of over-
pressure condition
by pressure
switch will shut
solenoid valves
on line. | TBD | loss of initial setting. Loose internal parts from launch vibe. | PT 8, and 9
would measure
over pressure. | Any pressure over specified amount for experiment and all solenoids shut. Pressure regulator can be replaced. | | FOMA-03-21 | PR3
Pressure
Regulator | Regulate
diluent /
premixed gas
pressure from
2000 PSI to
100 PSI. | Over-
regulates
pressure far
below 100
PSI. | 3 | Reduction of flow rate to mass flow controller. | Possible loss or delay of some test points. | TBD | loss of initial setting. Loose internal parts from launch vibe. | PT 8, and 9
would measure
low pressure. | Re-set
pressure
regulator.
Second
failure may
necessitate
removal and
replacement. | | Package and
Failure mode
No. | Item | Function | Failure
Mode | Crit | Local Effect | System Effect | Station /Crew
Effects | Potential
Causes | Detection
Method | Compensating
Provision | |------------------------------------|---------------------------------|--|--|------|---|--|--------------------------|---|---|--| | FOMA -03-22 | PT 26
Pressure
Transducer | Provides an exact measurement of pressure across the diaphragm. Used to detect diaphragm rupture. | Reads a
pressure
that is lower
than actual | 2R | Provides incorrect data to computer and/or crew | Inability to detect
rupture of
pressure regulator
diaphragm. | TBD | Leaking, loss of signal, performance drifts out of spec. | Data from other
Pressure
transducers on
the line would
contradict
PT26. | PT26 reading a lower pressure would indicate a detection failure of the pressure transducer and this item would be replaced. | | FOMA-03-23 | PT26
Pressure
Transducer | Provides an exact measurement of pressure across the diaphragm. Used to detect diaphragm pressure. | Reads a
pressure
that is higher
than actual | 2R | Provides incorrect data to computer and/or crew. | Could conceivably cause computer to command solenoid valves to close and shut off gas supply. | TBD | Leaking, loss of signal, performance drifts out of spec. | Data from other
Pressure
transducers on
the line would
contradict
PT26. | Would replace
PT 26. If
problem
persisted, then
PR 3 would be
replaced. | | FOMA-03-24 | PT26
Pressure
Transducer | Provides an exact measurement of pressure across the diaphragm. Used to detect diaphragm rupture. | Fails to operate. No reading. | 2R | Provides NO data to computer and/or crew. | Inability to detect
rupture of
pressure regulator
diaphragm. | TBD | Leaking, loss of signal, performance drifts out of spec. May be caused by open-circuit failure. | Data from other
Pressure
transducers on
the line would
contradict
PT26. | Would need a procedure to replace PT26. Re-open valves and clear erroneous data from IOP to restart fill operation. | | FOMA -03-25 | PS3
Pressure
Switch | Would provide computer the capability to shut solenoid valves if pressure downstream of PR3 exceeds 100 PSI. | Fails to
switch
solenoid
valves on the
line to closed
position. | 1R | Buildup of
pressure in gas
line. Possible
over-
pressurization.
Reliance now on
PT8 to shut
solenoid valves. | May allow gas pressure on line to build up and presents a hazard in the event of PT 8 failure. Threat of possible over-pressurization. | TBD | Leaking, loss of signal, performance drifts out of spec. | Data from
Pressure
transducers on
the line would
indicate loss of
pressure
control. | Would need a procedure to replace PS3. Reopen valves and clear erroneous data from IOP to restart fill operation | | Package and
Failure mode
No. | Item | Function | Failure
Mode | Crit | Local Effect | System Effect | Station /Crew
Effects | Potential
Causes | Detection
Method | Compensating
Provision | |------------------------------------|-------------------------------------|---
--|------|--|---|--------------------------|--|--|--| | FOMA -03-26 | PT8, PT9
Pressure
Transducers | Provides an exact measurement of pressure | Reads a
pressure
that is lower
than actual | 1R | Provides
incorrect data to
computer and/or
crew | Could conceivably
allow build up of
pressure on line
without crew
knowledge.
Possible Hazard | TBD | Leaking, loss of signal, performance drifts out of spec. | PT 15, 28, &
29 readings will
not be
consistent with
PT 8 & 9. | Would need a procedure to re- place PT8 & 9. Re-open valves and clear erroneous data from IOP to restart fill operation | | FOMA -03-27 | PT8,PT9
Pressure
Transducers | Provides an exact measurement of pressure | Reads a
pressure
that is higher
than actual | 2R | Provides incorrect data to computer and/or crew | Could conceivably cause computer to command solenoid valves to close and shut off gas supply. | TBD | Leaking, loss of signal, performance drifts out of spec. | PT 15, 28, & 29 readings will not be consistent with PT 8 & 9. | Would need a procedure to replace PT8 & 9. Re-open valves and clear erroneous data from IOP to restart fill operation | | FOMA -03-28 | PT8, PT9
Pressure
Transducers | Provides an exact measurement of pressure | Fails to operate. No reading. | 1R | Provides NO data to computer and/or crew. | Gas pressure in line could build up without crew knowledge | TBD | loss of signal caused by open-circuit failure. | PT 15, 28, &
29 readings will
not be
consistent with
PT 8 & 9. | Would need a procedure to replace I/O card in the FCU and/or PT8 & 9. Re-open valves and clear erroneous data from IOP to restart fill operation | | Package and
Failure mode
No. | Item | Function | Failure
Mode | Crit | Local Effect | System Effect | Station /Crew
Effects | Potential
Causes | Detection
Method | Compensating
Provision | |------------------------------------|----------------------------------|--|--|------|--|--|--------------------------|---|--|--| | FOMA -03-29 | MFC2: Mass
flow
controller | Meters mass
flow of diluent
/premixed gas
to combustion
chamber for
experiments | Allows too
much flow | 1R | Flow output is greater than set-point. Control valve tries to close. | Incorrect test conditions due to incorrect gas flow. Mass of flammable gas in chamber may exceed requirement for test point. Possible over pressurization presents a hazard. | TBD | 1.Internal control valve coil does not electrically respond or does not respond correctly to closure signal. 2.Internal valve has corrosion or contamination. | PT 15, 28, &
29 readings will
indicate rapid
build-up of
pressure. | Timers will provide closure signal to SV7 & 8.Fuel-to-oxygen mixture ratio will be checked. IOP & crew will not enable ignition. Fault Isolate to MFC2 and replace MFC2. | | FOMA -03-30 | MFC2: Mass
flow
controller | Meters mass
flow of diluent
/premixed gas
to combustion
chamber for
experiments | Allows too
little
flow | 3 | Flow output is less than set point. Control valve tries to open. | Incorrect test conditions due to incorrect gas flow. Ignition would provide incorrect experiment and data not useful. | TBD | Internal solenoid
will not open or
will not open
completely, due
to a burned out
or damaged coil. | PT 15, 28, & 29 readings will indicate pressure is too low. | Fuel-to-oxygen mixture ratio will be verified. IOP & crew will not enable ignition. Fault Isolate to MFC2 and replace MFC2. | | FOMA -03-31 | MFC2: Mass
flow
controller | Meters mass
flow of fuel/pre-
mixed gas to
combustion
chamber for
experiments | Reads mass
flow as
higher than
actual | 3 | Principle Investigator stationed on ground, may not notice that values are too high. | Could lead to incorrect measure-ment of the total mass involved in experiment. PI would get "skewed" scientific results. | TBD | MFC calibrated incorrectly, or not calibrated. MFC output drifts out of specification. MFC damaged by launch vibe. | PT 15, 28, & 29 readings will indicate expected pressure in line and will not agree with MFC2. | Fuel-to-oxygen mixture ratio will be verified. IOP & crew will not enable ignition. Fault Isolate to MFC2 . Re-calibrate MFC2 or remove and replace MFC2. | | FOMA-03-32 | MFC2: Mass
flow
controller | Meters mass
flow of diluent
/premixed gas
to combustion
chamber for
experiments | Reads mass
flow as lower
than actual | 3 | Principle Investigator stationed on ground, may not notice that values are too low. | Could lead to incorrect measure-ment of the total mass involved in experiment. PI would get "skewed" scientific results. | TBD | MFC calibrated incorrectly, or not calibrated. MFC output drifts out of specification. MFC damaged by launch vibe. | PT 15, 28, &
29 readings will
indicate
pressure
expected
pressure and
will not agree
with MFC1. | IOP & crew will not enable ignition. Fault Isolate to manifold. Recalibrate MFC1 or remove and replace manifold. | | Package and Failure mode No. | Item | Function | Failure
Mode | Crit | Local Effect | System Effect | Station /Crew
Effects | Potential
Causes | Detection
Method | Compensating Provision | |------------------------------|--|--|--|------|---|--|--------------------------|---|--|---| | FOMA-03-33 | MFC2: Mass
flow
controller | Meters mass
flow of diluent
/premixed gas
to combustion
chamber for
experiments | Allows NO
flow -through
of fuel or pre-
mixed fuel. | 3 | PT 15, 26, and
27 read low
pressure. | Unable to perform experiment with contents of GB3. Cannot start ignition. Nothing to burn. | TBD | Internal solenoid will not open due to a burned out or damaged coil. | Pressure
transducers
upstream of
MFC2 read
positive
pressure but
readings
downstream
show little or no
pressure. | IOP & crew will
not attempt
ignition. Will
Fault Isolate to
manifold. Re-
move MFC2 or
remove and
replace
manifold. | | FOMA -03-34 | All Connections in-and-out of any components on gas line through manifold. | To transfer diluent / premixed gas through the manifold. | Leakage into combustion integrated rack | 1R | Diffusion and spreading of flammable and/or possibly toxic gas. | Hazardous to crew. Possible fire hazard. | TBD | Leaks in components caused by faulty seals, imperfect mating, or damaged connections. | All pressure transducer outputs would be monitored. Strict attention to pressure profile curves and pressure readings in combustion chamber. | In the event that instrumentation indicates conditions which could be the result of system leakage, the fill procedure will be terminated and off-nominal procedure implemented. Pressure decay leak check. Isolate to manifold. Remove and replace manifold. Bottle sizes and content pressures are selected to assure all LFL and SMAC levels are met in the case of leakage into the rack. | | Package and
Failure mode
No. | Item | Function | Failure
Mode | Crit | Local Effect | System Effect | Station /Crew
Effects | Potential
Causes | Detection
Method | Compensating
Provision | |------------------------------------|-------------------------------|--|--|------|---
---|--------------------------|---|--|--| | FOMA-03- 35 | PR 3
Pressure
Regulator | Regulate diluent / premixed gas pressure from 2000 PSI to 100 PSI. | Diaphragm
Rupture | 1 | Loss of diluent / premixed gas needed for experiments. Hazard to crew: flammability/toxic substance threat. | Detection of leak may necessitate system shutdown. Non-detection of leak may result in a flammability hazard or toxic substance threat. | TBD | Broken seals or cracked seals caused by inherent design weakness like sensitivity to changes in temperature or vibration. | PT 26 would indicate pressure. | Design of pressure regulator is maintainable: If regulator is leaking due to seal failure, entire regulator can be removed and replaced. Bottle size and amount of gas are selected to avoid flammability/ toxic substance concerns. | | FOMA-03-41 | QD2 quick
disconnect | Transfer of
diluent
/premixed
gas | Leakage | 1R | Loss of diluent / premixed gas supply. | Loss of test points
requiring GB3
supply. Hazard to
crew: Release of
flammable and/or
toxic gas in
oxygen | TBD | Corrosion, pre-
mature wear.
Galling | In the more
severe case,
Pressure
transducers
may show loss
of pressure. In
less severe
cases (small
leak) this
failure may go
undetected. | Replacement of
the Quick
disconnect may
be required. | | FOMA-03-42 | QD2 quick
disconnect | Transfer of diluent /premixed Gas | Difficult or
unable to
dis-
engage QD | 3 | Unable to dis-
connect diluent/
premixed supply
line from gas
bottle GB3. | Unable to change diluent/ premixed supply for next experiment. | TBD | Damage to QD From vibration. | Visual | Would have to switch over to use of N2 line to perform experiments that could be accomplished until problkem with GB3 is corrected. | | Package and
Failure mode
No. | Item | Function | Failure
Mode | Crit | Local Effect | System Effect | Station /Crew
Effects | Potential
Causes | Detection
Method | Compensating
Provision | |------------------------------------|--------------------|--|------------------------------------|------|--|---|--------------------------|-----------------------------|---------------------|---------------------------| | FOMA -03-43 | CV6 check
valve | Isolates Diluent
Premixed gas
Supply
manifold | Leakage
(external) | 1R | Leakage of diluent gases into CIR | Could constitute a toxicity threat or flammability hazard. | TBD | Damage to valve. | TBD. | TBD. | | FOMA -03-44 | CV6 check
valve | Isolates Diluent
Premixed gas
Supply
manifold | Fails to close
when
required | 2R | Loss of pro-
tection from
back-flushing
effect. | May necessitate shutdown of diluent manifold. Switch over to use of nitrogen supply manifold. | TBD | Contamination or corrosion. | TBD. | TBD. | | FOMA -03-45 | CV6 check
valve | Isolates Diluent
Premixed gas
Supply
manifold | Fails to open | 2R | Cannot flow
diluent into
Combustion
chamber | Forced to either fault isolate or switch over to use of nitrogen supply manifold. | TBD. | Contamination or corrosion. | TBD. | TBD. | | FOMA -03-46 | Filter F3 | Filters debris from gas line | Leakage | 3 | Leakage of diluent gases into CIR | toxicity threat or flammability hazard. | TBD. | TBD. | TBD. | TBD. | ## TABLE IV. FMEA WORKSHEET FOR THE FOMA High Percentage Oxygen Supply Manifold | Failure mode
No. | Item | Function | Failure Mode | Crit | Local Effect | System Effect | Station/Crew
Effects | Potential
Causes | Detection
Method | Compensatin g Provision | |---------------------|---|---|--|------|---|---|-------------------------|---|---|---| | FOMA-04 | High Percentage Oxygen supply Manifold. | | | | | | | | | | | FOMA -04-1 | GB-1 Oxygen
Supply Bottle | Provide O2 for
Combustion | Burst | 1 | Loss of O2 supply, possible damage to local components. | Loss of test points,
Fire hazard,
ejection of
Projectiles. | TBD | Structural
failure
due to crack
growth under
applied
stresses. | Visual and immediate effect. | Design GB1 as
LBB. Qualify
per MIL-STD-
1522A. * | | FOMA-04-2 | GB-1 Oxygen
Supply Bottle | Provide O2 for
Combustion | Leakage | 1R | Loss of O2 supply. | Loss of test points, Fire hazard. | TBD | Crack growth to
Surface
creating a small
hole | Transducer s read low pressure. | Design GB1 as
LBB. Qualify
to MIL-STD-
1522A.* | | FOMA -04-3 | GB-1 Oxygen
Supply Bottle | Provide O2 for
Combustion | Provides
Contaminated
O2 | 2R | Contaminants passed to chamber | Faulty or skewed science data. | TBD | Failure to meet
Contamination
control
requirements | None. After experiment Scientific data is skewed. | Filter F1
provides
filtering of O2
Supply. | | FOMA-04-7 | QD1 Quick
disconnect | Provide
connection of
Bottle supply to
line for O2
transfer | Fails to allow safe/correct connection | 3 | Cannot permit flow of O2. | Loss of ability to provide O2 to Chamber. Cannot perform tests. | TBD | Contamination,
Corrosion,
premature wear
or galling. | Astronauts unable to correctly attach gas bottle to line. | Must be able
to remove
failed QD and
replace it. | | FOMA -04-8 | | | Leakage | 1R | Loss of O2 needed for experiment. | Release of O2 into CIR. Fire Hazard. Loss of O2 needed for experiments. | TBD | Vibration levels
Cause damage
to
QD. | Transducer
s show
no/little
pressure. | TBD | | Failure mode
No. | Item | Function | Failure Mode | Crit | Local Effect | System Effect | Station/Crew
Effects | Potential
Causes | Detection
Method | Compensatin
g Provision | |---------------------|--|--|---|------|--|--|-------------------------|---------------------------------------|--|---| | FOMA -04-8A | | | Difficult or
unable to
disengage | 3 | Unable to disconnect gas bottle | Unable to operate manifold for successive experiments | TBD | Same as above | Visual | TBD | | FOMA -04-9 | PI1 Pressure
Indicator | Indicates Pressure in order to give the crew an indication that the gas bottle can be removed. | Reads a
pressure that is
higher than
actual | 3 | Provides incorrect data to the crew. | Timing of bottle change out will be questioned. | TBD | Spring performance incorrect. | PT1 Transducer reading relayed to crew by computer. Comparison with Pl1. | Other Transducers would indicate true pressure. Crew would be informed that it is safe to remove the gas bottle. | | FOMA -04-10 | | | Reads a pressure that is lower than actual. | 1R | Provides incorrect data to the crew. | May not be able to disconnect bottle. Disconnection could propel bottle away from QD1. | TBD | Spring performance incorrect. | (Same as above) | (Same as above) | | FOMA -04-11 | | | Fails to operate.
No reading. | 1R | Provides no data to the crew. | May not be able to disconnect bottle. Disconnection could propel bottle away from QD1. | TBD | Spring performance incorrect. | PT1
Transducer
reading
relayed to
crew by
computer.
Comparison
with PI1. | Other Transducers would indicate true pressure. Crew would be informed that it is safe to remove the gas bottle. | | FOMA -04-12 | PT1, 2, 3, & 18
Pressure
Transducers | Provides data
on
O2 line
pressure to
crew | Reads a
pressure that is
higher than
actual. | 2R | Provides incorrect data
to computer and/or Crew | Could cause the gas supply to be shut down and stop fill operation. | TBD | Performance
drifts out of
spec. | Data from
other
pressure
transducers
on the line
would
contradict
transducer. | Would need a procedure to reopen valves and clear erroneous data from computer to restart fill operation. PT may have to be removed and replaced. | | Failure mode
No. | Item | Function | Failure Mode | Crit | Local Effect | System Effect | Station/Crew
Effects | Potential
Causes | Detection
Method | Compensatin
g Provision | |---------------------|-----------
---|--|------|---|--|-------------------------|---|--|---| | FOMA-04-13 | | | Reads a
pressure that is
lower than
Actual. | 1R | Provides incorrect
data to computer
and/or Crew | In the event that O2 pressure was building up in the line, the crew would have incorrect information. | TBD | Loss of signal,
Performance of
PT is drifting
out of spec. | Data from
other
pressure
transducers
on the line
would
contradict
Transducer. | Failure tolerance from over- pressurization is designed in. PT has back-up from the pressure regulator and pressure switch. | | FOMA-04-14 | | | Fails to operate.
No Reading. | 1R | Provides No data to comput er and/or crew. | In the event that O2 pressure was building up in the line, the crew would have No information from PT. | TBD | Loss of signal,
Performance of
PT is drifting
out of spec. | Data from
other
pressure
transducers
on the line
would be
Provided. | (See above) | | FOMA-04-15 | F1 Filter | Provide filtering
of O2 carried in
gas line | Fails to stop
contaminants | 3 | Contaminants are passed on through the line. | Faulty data:
Burns containing
contaminates. | TBD | Holes, damage/
deterioration. | Faulty data
may result
in detection
of
Problem. | Filter can be replaced. Exhaust, clean, vent and re-fill with spare bottle. | | FOMA-04-16 | | | Fails to stop
some
contaminants. | 3 | Small amounts of contaminants are passed on through the line. | Some inaccuracy in science data as a result. | TBD | Holes, damage/
deterioration. | Pressure
transducers
in the line
will indicate
lower
pressure. | Filter can be replaced. Exhaust, clean, vent and re-fill with spare bottle. | | FOMA-04-17 | | | Clogged | 3 | Stops or greatly reduces O2 flow to mass flow controller. | Cuts off O2
supply to
chamber and
experiment
cannot be
performed. | TBD | Large size particles and/or debris in filter blocks gas flow out. | (See
above) | (see above) | | Failure mode
No. | Item | Function | Failure Mode | Crit | Local Effe ct | System Effect | Station/Crew
Effects | Potential
Causes | Detection
Method | Compensatin g Provision | |---------------------|-----------------------------------|----------------------|----------------------------|------|--|--|-------------------------|--|--|--| | FOMA-04-17a | | | Leakage | 1R | Release of O2
(prior to pressure
regulator) into
CIR. | Fire Hazard.
Loss of O2
needed for
experiments. | TBD | Cracked or damaged filter. | | | | FOMA -04-18 | Solenoid valves
SV 3,4, and 5. | Control of Gas flow. | Leakage | 1R | Loss of O2 from supply. O2 will diffuse into CIR. | Fire hazard.
Loss of O2
needed for
Experiment | | Seal failure. | Transducer
s show
reduced
pressure. | Shut down O2
supply at
MV1.
Allow O2 in
CIR to safely
dissipate.
Safely
remove
O2 from
combustion
chamber.
Removal &
replacement
of defective
Solenoid
valve. | | FOMA-04-19 | | | Fails to open. | 2R | Blocks flow of O2 through line. | Cannot provide O2 supply for Combustion experiment. | | Coil burn out. | Pressure transducers upstream of solenoid valve would show pressure but transducers downstrea m would read reduced pressure. | Shut down O2
supply at
MV1.
Safely
remove
O2 from
combustion
chamber.
Removal &
replacement
of defective
Solenoid
valve | | FOMA-04-20 | | | Fails to Close completely. | 1R | Allows flow of O2
when shut down is
intended. | Possible contributing cause to a hazard. | | Large debris or excessive contamination on valve seat. | Pressure
transducer
indication
downstrea
m. | See above. | | Failure mode
No. | Item | Function | Failure Mode | Crit | Local Effect | System Effect | Station/Crew
Effects | Potential
Causes | Detection
Method | Compensatin
g Provision | |---------------------|------------------------------|--|--|------|--|---|-------------------------|---|--|--| | FOMA -04-21 | PR1
Pressure
Regulator | Regulates the input pressure from 2000 psi down to specified pressure. | Fails to regulate pressure down to specified level. | 1R | Buildup of pressure in gas line. Possible over-pressurization. | Detection of
over-pressure
condition by
pressure switch
will shut solenoid
valves on line. | TBD | Loss of initial setting. Loose internal parts/damage from launch vibe. | PT2 Transducer reading relayed to crew by computer. Comparison with PI1. | Any pressure
over specified
amount for
experiment
and all
solenoids
shut. Pressure
regulator can
be replaced. | | FOMA -04-22 | | | Over-regulates pressure far below specified level. | 3 | Reduction of flow rate to mass flow controller | Possible loss or delay of some test points. | TBD | Loss of initial setting. Loose internal parts/damage from launch vibe. | PT2 Transducer reading relayed to crew by computer. Comparison with PI1. | May have to
remove failed
pressure
regulator and
replace it. | | FOMA -04-23 | PR1
Pressure
Regulator | Regulates the input pressure from 2000 psi down to specified pressure. | Leakage | 1R | Leakage of O2 leading
to loss of O2 needed
for experiment | Leakage of O2 into CIR. Possible fire hazard. | TBD | 1.Seat damage due to chemical reaction or debris. 2. Diaphragm failure. | PT2 Transducer reading relayed to crew by computer. Comparison with PI1 reading. | Comparison with PT1, PT2 pressure transducers would provide a monitoring of input pressure. Would tend to indicate leakage. Pressure regulator tends to be robust component. | | FOMA -04-24 | PS1
Pressure
Switch | Provides capability to shut solenoid valves if pressure downstream of PT1 exceeds 100 psi. | Fails to switch
solenoid valves
to closed
position. | 1R | Buildup of O2
pressure in gas line.
Reliance now on PT2
to shut solenoid
valves. | Possible threat
of over-
pressurization in
the event of
other failures. | TBD | Broken internal spring. | Data from
transducers
would
indicate
pressure
build-up. | Pressure
switch is
backed up by
pressure
regulator and
PT/computer
system. | | Failure mode
No. | Item | Function | Failure Mode | Crit | Local Effect | System Effect | Station/Crew
Effects | Potential
Causes | Detection
Method | Compensatin
g Provision | |---------------------|---------------------------------|---|---|------|---|--|-------------------------|--|--|---| | FOMA -04-25. | MFC3
Mass Flow
controller | Meters flow of
oxygen to
combustion
chamber for
experiments | Allows flow that
is higher than
required.(too
much flow) | 1R | Flow output is greater than set point. Control valve tries to close. | Incorrect test conditions due to incorrect flow of O2. Possible over-pressurization of chamber during combustion. Possible Hazard. | TBD | Internal control valve is stuck in open position. Control valve does not respond. Sensor tubes faulty and cause MFC to go full open. | PT 15, 28,
&29
readings
would
indicate a
buildup of
pressure. | Timers will provide closure signal to SV4 and SV5. Fuel-to-Oxygen ratio will be checked prior to ignition. Can remove and replace MFC3. | | FOMA-04-26 | | | Allows flow that
is lower than
required. (too
little flow) | 2R | Flow output is less than set-point. Control valve
tries to open. | Incorrect test conditions due to incorrect flow of O2. Ignition would provide incorrect experiment and data. | TBD | Internal
solenoid may
not open
completely if
coil is damaged
or burned out. | PT 15, 28,
&29
readings
would
indicate a
loss of
pressure. | Fuel-to-
oxygen
mixture ratio
will be
verified.
IOP and crew
will not enable
ignition.
Would Fault
isolate to
MFC3.
Remove and
replace
MFC3. | | FOMA-04-27 | | | Reads mass
flow
as higher than
actual . | 2R | Principle Investigator on ground may not notice that values are too high. | Could lead to incorrect measurement of the total O2 mass involved in the experiment. PI would get "skewed" scientific results. | TBD | MFC calibrated incorrectly, or not calibrated. MFC output drifts out of spec. MFC damaged by launch vibe. | PT 25, 28,
and 29
readings
will indicate
expected
pressure in
line and will
not "agree"
with MFC3. | Fuel-to- oxygen mixture ratio will be verified. IOP and crew will not enable ignition. Would Fault isolate to MFC3. Recal- ibrate MFC3, or remove and replace MFC3. | | Failure mode
No. | Item | Function | Failure Mode | Crit | Local Effect | System Effect | Station/Crew
Effects | Potential
Causes | Detection
Method | Compensatin
g Provision | |---------------------|--------------------|--|--|------|--|--|-------------------------|---|---|---| | FOMA -04-28. | | | Reads mass-
flow as lower
than actual. | 2R | Principle Investigator on ground may not notice that values are too low. | Could lead to incorrect measurement of the total O2 mass involved in the experiment. PI would get "skewed" scientific results. | TBD | MFC calibrated incorrectly, or not calibrated. MFC output drifts out of spec. MFC damaged by launch vibe. | PT 25, 28,
and 29
readings
will indicate
expected
pressure in
line and will
not "agree"
with MFC3. | Fuel-to-
oxygen
mixture ratio
will be
verified.
IOP and crew
will not enable
ignition.
Would Fault
isolate to
MFC3. Recal-
ibrate MFC3,
or remove
and replace
MFC3. | | FOMA-04-29 | | | Allows no flow through of O2. | 2R | PT 25, 26, and 27 read low pressure. | Unable to perform experiment with contents of GB3. (If ignition was attempted, a mixture with some O2 might actually burn but results would be unsatisfactory) | TBD | Internal solenoid valve fails in closed position or MFC is clogged. Internal "sensor system " of MFC might mal-function and shut flow control valve way down. | Pressure
transducers
upstream of
MFC3 read
positive but
readings
downstrea
m show
little or no
pressure. | Fuel-to-
oxygen
mixture ratio
will be
verified.
IOP and crew
will not enable
ignition.
Would Fault
isolate to
MFC3. Recal-
ibrate MFC3,
or remove
and replace
MFC3. | | FOMA-04-35 | CV7 Check
valve | Prevents any gases from other manifolds from backflushing into the O2 supply Manifold. | Fails to close when required to close. | 2R | Loss of protection from back-flushing | Build-up of
pressure would
be detected.
Would force a
shutdown. | TBD | Internal
mechanical or
electrical
failure | Pressure
transducers
PT 9 and
15 would
show
gradient
into
02
manifold. | IOP and crew
will not give
command for
ignition. Will
fault isolate
and confirm
CV7 failure. | | Failure mode
No. | Item | Function | Failure Mode | Crit | Local Effect | System Effect | Station/Crew
Effects | Potential
Causes | Detection
Method | Compensatin g Provision | |---------------------|----------------------------|--|--|------|---|--|-------------------------|-------------------------------------|---|--| | | | | Fails to open
when required
to open. | 2R | Cannot flow O2
Into combustion
chamber | Inability to carry out experiment. | TBD | Debris or contamination on seat. | Pressure
transducer
s PT 9 and
15 would
show low
pressure
downstrea
m from
CV7. | IOP and crew
will not give
command for
ignition. Will
fault isolate and
confirm CV7
failure. | | | | | Leakage | 1R | O2 leakage into CIR. | Possible Fire
Hazard. Loss of
oxygen needed
for
Experiment. | TBD | Cracked seal
or
valve damage. | PT 15
would start
to show a
loss of line
pressure. | IOP and crew
will not give
command for
ignition. Will
fault isolate and
confirm CV7
failure. | | FOMA-04-36 | MV1 Manual
Bottle valve | Allows O2 to
flow from bottle
into the
manifold line. | Valve stuck
open | 18 | Cannot manually
shut off O2 flow from
bottle. | Cannot shut off O2 flow from the source in the event of an emergency. | TBD | Damaged valve internally. | Pressure
rise PT1
and no
reduction
in
pressure
after
turning
MV1. | TBD | | FOMA-04-37 | | | Valve stuck
closed | 2R | Cannot enable
flow of O2 from
Source. | Cannot initiate fill of chamber with required O2. Will most likely be caught by GC sampling. If not, burn could proceed without enough O2. Experimental data would be defective. | | Contamination or corrosion. | No
increase in
pressure
measured
by PT1
after
turning
MV1. | TBD | | Failure mode
No. | Item | Function | Failure Mode | Crit | Local Effect | System Effect | Station/Crew
Effects | Potential
Causes | Detection
Method | Compensating
Provision | |---------------------|------|----------|--------------|------|-------------------------|--|-------------------------|-------------------------------------|---|---------------------------| | FOMA-04-38 | | | Leakage | 1R | Leakage of O2 into CIR. | Loss of O2
needed for
experiment.
Leakage of O2
presents a fire
hazard. | | Cracked
seal or valve
damage. | Smaller than
Expected
increase in
pressure
measured by
PT1 after
turning MV1. | TBD | ## TABLE V. FMEA WORKSHEET FOR THE FOMA Static Mixer | | test requirement mod | | | | 11 | 1 Occasions 5" 1 | 0(-(!/0 | I Determine | D-t | | |------------------|---|---|---------------|------|---|--|-------------------------|---|--|--| | Failure mode No. | Item | Function | Failure Mode | Crit | Local Effect | System Effect | Station/Crew
Effects | Potential
Causes | Detection
Method | Compensating
Provision | | FOMA -05-1 | Static Mixer Stainless Steel Multi-helical tubing No moving parts. No electrical interface. Orifice size rules out clogging as a viable failure mode. | In "Static" operating mode will transfer the content of one gas bottle at a time to combustion chamber. In dynamic mixing mode, will accept input from 2 or 3 gas manifolds at one time and force all gases to mix. | Leakage | 1R | Leakage of various gases such as Premixed Fuels, Oxygen and/or Nitrogen into CIR. | Release of gases into CIR constitutes Hazard for Fire or oxygen depletion in the worst case. Gases needed for experiment are lost. Experiment burn would not contain appropriate amounts of fuel and/or oxygen and would provide incorrect data. |
All TBD | Structural weakness of static mixer. Crack growth from launch vibration. Fittings on static mixer are Defective and leak. | PT 15, 28, and 29 would read lower pressure than expected. Would not be consistent with pressure transducer readings within manifolds. Indication would be that gas was being lost somewhere on static mixer line. | Static Mixer is designed to be composed of stainless steel and should be of sufficient structural strength. Unit should be qualified for flight to demonstrate ability to survive launch vibe. | | FOMA -05-2 | Solenoid Valve
SV14 | When closed
provides
isolation from
Exhaust Vent
Package, | Leakage | 1R | Leakage of various gases such as Premixed Fuels, Oxygen and/or Nitrogen into CIR. | (See directly
above in this
column) | | Defective seals,
Cracked valve
housing. | (See
directly
above in
this column) | Valve will be
qualified for
Flight vibration
levels. | | FOMA -05-3 | | when open provides alternate path to dump precombustion gases to Exhaust Vent package. | Fails to Open | 1S | Inability to provide alternate path for venting of precombustion gases as part of off-nominal procedures. | Could contribute to a hazard. There may be situations (such as possible overpressurization in the gas line) in which failure to open SV14 cuts off ability to reduce line presure. | | Solenoid coil fails and valve will not open. SV 14 is operational but does not receive a signal to open. | PT 15, 28,
and 29
would read
higher
pressure
than
expected. | TBD | | Failure mode
No. | Item | Function | Failure Mode | Crit | Local Effect | System Effect | Station/Crew
Effects | Potential
Causes | Detection
Method | Compensating
Provision | |---------------------|--------------------------------|---|--|------|---|--|-------------------------|--|---|---------------------------| | FOMA -05-4 | | | Fails to Close | 2R | Provides undesired alternate path which allows precombustion gases to flow toward Exhaust Vent Package. | Loss of pre-mix
Fuel /oxygen or
Nitrogen flow
rate. May
adversely affect
gas mixture
ratios for
experiment. | | Debris or contamination on valve seat. | PT 15, 28,
and 29
would read
lower
pressure
than
expected. | TBD | | FOMA -05-5 | | | Reads a
pressure that is
higher than
actual | 2R | Provides incorrect or misleading data. | Could halt
experiment if
other trans -
ducers failed. | | Electrical performance drifts out of spec. | Readings
from PT 28,
and 29
would
contradict
PT 15. | TBD | | FOMA -05-6 | | | Reads a
pressure that is
lower than
actual | 1R | Provides incorrect or misleading data. | Could mislead
crew when
pressure in line
is building up. | | Electrical performance drifts out of spec. | Readings
from PT
28, and 29
would
contradict
PT 15. | TBD | | FOMA -05-7 | Pressure
Transducer
PT15 | Measurement
of gas
pressure
output from
static mixer. | No output | 1R | Provides NO data. | Provides no data
when pressure in
line is building
up. | | Open-circuit failure or short. | Fall back to
readings
from PT 28
and PT29 | TBD | | FOMA -05-8 | | | Reads a
temperature
that is higher
than actual. | 2R | False indication of output temperature | Readings on other temperature sensors will not be consistent with TC4. In the worst case, if other temp. sensors read high, the experiment could be shut down. | | TBD | Readings
on other
temper-
ature
sensors will
not be
consistent
with TS6. | TBD | | Failure mode
No. | Item | Function | Failure Mode | Crit | Local Effect | System Effect | Station/Crew
Effects | Potential
Causes | Detection
Method | Compensating Provision | |---------------------|---------------------|--|---|------|--|---|-------------------------|---------------------|---|------------------------| | FOMA -05-9 | Thermocouple
TC4 | Measurement of gas output temperature from static mixer. | Reads a
temperature
that is lower
than actual. | 1R | False indication of output temperature | Readings on other temper-ature sensors will not be consistent with TS6. Worst case: Other temp. sensors read low and hazardous condition is not detected. | | TBD | Readings
on other
temper-
ature
sensors will
not be con-
sistent with
TS6. | TBD | | FOMA -05-10 | | | No output | 1R | No indication of output temperature | No data will be received from TS6. Worst case: Other temp. sensors fail and hazardous condition is not detected. | | TBD | No data will
be received
from TS6. | TBD | ## TABLE VI. FMEA WORKSHEET FOR THE FOMA | Item | Function by
Schematic ID | Failure Mode and number | Crit | Local Effect | System Effect | Station/Crew
Effects | Potential
Causes | Detection
Method | Compensating
Provision | |--|--|--|------|--|--|-------------------------|---------------------|---|---| | Combustion
chamber, Valves
and sensors to
Combustion
chamber | The combustion chamber contains various mixtures of combustible gases and fuels and the actual combustion of these fuels. Various sensors provide monitoring data on temperature and pressure in the chamber or on gas input and output lines connecting to the combustion chamber. | | | | | ALL TBD | | | | | Solenoid Valves | The solenoid valves open to allow the flow of gases into the combustion chamber and close to isolate the other sections of the FOMA from gas inside the combustion chamber. The combustion chamber solenoid valves listed below interface with design packages as follows: SV 16: Fuel/Premixed Fuel Supply Manifold SV18: Static Mixer SV20: Bypass line around Static Mixer for Nitrogen SV15: Gas Chromatograph Package SV19: Pump Manifold SV21: Exhaust Manifold | FOMA-06-01: Any one solenoid valve Fails in closed position. (Will not open) | 2R | Pre-combustion gases cannot flow into combustion chamber or Post - combustion gases cannot be vented or sent to GC for analysis. | Significant Loss of functionality . SV: 16, 18, or 20-Inability to fill combustion chamber with required premixed fuel gases, diluent, oxidizer, or Nitrogen. SV15: Cannot transfer gases to GC for analysis. SV 21: Cannot transfer gases to Exhaust Manifold from chamber. SV19: Cannot circulate gases back to combustion chamber from Pump Manifold. | | Coil Burn out. | PT 16,17, 28, and 29 will yield pressure measurements (pressure profile curve with time) which shows chamber pressure does not rise to expected values after valves along the fill line are commanded to open. Will have to fault isolate to a valve. | The solenoid isolation valves for the combustion chamber are designed in as a maintainable item. In the event of failure, the failed valve may be removed from the chamber assembly and replaced with a spare. Solenoid valve SV21 has a bac kup by way of manual vent valve MV5 which can be opened to provide a manual vent of chamber contents to the exhaus manifold. | | FOMA-06-02:
Any one solenoid
valve fails to
close. (Stuck in
open position) | 2R | Loss of functionality on a primary control valve. Possible failure to isolate the other Sections of the FOMA from gases within the combustion chamber. | Failure to isolate a section of the FOMA from gases within the combustion chamber. Detection of this failure would
essentially lead to system shutdown and Off-nominal procedures. (TBD) Undetected: Precombustion gases would be prevented from back-streaming to manifolds by check valves CV 1,2, and 10. Back-streaming into Exhaust Manifold would be prevented by SV24 and into the pump manifold by CV11. | Internal mechanical failure of solenoid valve. Large debris or contamination on valve seat. | PT 16,17, 28, and 29 will yield pressure measurements (pressure profile curve with time) which shows chamber pressure falls to an unexpected level after valves along the fill line are commanded to close. Will have to fault isolate to a valve. | The solenoid isolation valves for the combustion chamber are designed in as a maintainable item. In the event of failure, the failed valve may be removed from the chamber assembly and replaced with a spare. | |---|----|---|--|---|--|--| | FOMA - 06-03:
Leakage | 1R | SV 16,18,or 20:
Release of
pre-combustion
gases.
SV15,19, or 21:
possible
release of
either pre-
combustion or
post-
combustion
gases. | Possible
flammability
hazard in the case
of a leak of
precombustion
gases, or a toxicity
hazard when post-
combustion gases
(burn products)
are leaked. | Damage to
valve seals
or valve
housing. | PT 16,17, 28, and 29 will yield pressure measurements (pressure profile curve with time) which shows chamber pressure falls to an unexpected level after valves along the fill line are commanded to close. Will have to fault isolate to a valve. | A Fault isolation procedure would be required to isolate which valve was leaking. System shutdown. The faulty solenoid valve would be removed and replaced with a spare. | | MV5 : Manual | MV5 provides venting of | FOMA -06-03a: | TBD | TBD | TBD | TBD | TBD | TBD | |-----------------|---|-------------------|-----|-----------------|--|--------------|------------------------------------|-------------------------------------| | Vent valve. (3 | the combustion chamber | 1 OWA-00-03a. | טטו | 100 | 100 | 100 | 100 | TDD | | positioning / 3 | along a path which is an | | | | | | | | | way ball valve) | alternative to passing | | | | | | | | | | through SV21. It will allow | | | | | | | | | | the transfer of gases from | | | | | | | | | | the combustion chamber to | | | | | | | | | | the Exhaust Manifold. It | | | | | | | | | | also provides a path to | | | | | | | | | | vent gases from the chamber directly to the | | | | | | | | | | vent manifold (MV4 valve) | | | | | | | | | | in the event of an off- | | | | | | | | | | nominal procedure. | | | | | | | | | | Secondly, MV5 can be | | | | | | | | | | opened, we can turn on | | | | | | | | | | pumps 1 and 2 and open | | | | | | | | | | SV19, in order to run a gas | | | | | | | | | | circulation clean-up loop. | | | | | | | | | | | | | | | | | | | Pressure | Monitor Pressure Readings | FOMA -06-04: | 1R | Provides | Could mislead | Perform- | Failure of a | PT 16,17, 28, and 29 | | Transducers | inside the Combustion | Reads a pressure | | incorrect data | the crew during an | ance drifts | transducer would | can be used to | | | chamber. | that is | | to computer | off-nominal | out of spec. | provide readings | monitor the pressure | | | (PT 16,17, 28, and 29) | Lower than actual | | and crew. | condition leading | | that are | profile in the | | | | | | | to a failure to take corrective action | | contradicted by
the other three | combustion chamber. This provides a | | | | | | | when required. | | transducers. | redundant function. | | | | | | | when required. | | transaucers. | redundant runction. | | | | FOMA -06-05: | 2R | Provides | Could mislead | Perform- | Failure of a | PT 16,17, 28, and 29 | | | | Reads a pressure | 211 | incorrect data | the crew during a | ance drifts | transducer would | can be used to | | | | that is | | to computer | nominal condition | Out of spec. | provide readings | monitor the pressure | | | | Higher than | | and crew. | leading to a | • | that are | profile in the | | | | actual. | | | corrective action | | contradicted by | combustion chamber. | | | | | | | which is not | | the other three | This provides a | | | | | | | required. | | transducers. | redundant function | | | | FOMA -06-06: | 1R | Provides NO | No data available | Open-circuit | Failure of a | PT 16,17, 28, and 29 | | | | Fails to operate. | | data to | on pressure profile | failure | transducer would | can be used to | | | | No output. | | computer and | in chamber. Loss | | provide readings | monitor the pressure | | | | | | crew. | of monitoring | | that are | profile in the | | | | | | | capability. | | contradicted by
the other three | combustion chamber. This provides a | | | | | | | | | tre other three | redundant function | | | | | | | | | | | | | | FOMA -06-07: | 1R | Release of | Possible fire or | Failure of | Other pressure | The fill operation | | | | Leakage | | "pre" or post | toxic hazard. | seal or | transducers | would be shut down | | | | | | combustion | | damage to | would indicate a | and the chamber would | | | | | | gases into CIR. | | Transducer | drop in chamber | be vented. Off nominal | | | | | | | | | pressure with solenoid valves closed. | procedure would be carried out to fault isolate to the transducer. The leak would be eliminated by a maintenance action. | |---------------------------|--|--|----|--|--|-----|---|--| | Thermistors
TM 1,2,3,4 | Monitor temperature profile inside of the combustion chamber. [TM1,2, 3, and 4] | FOMA -06-08:
Reads a
temperature that
is
Lower than actual | 1R | Provides incorrect data to computer and crew. | Could mislead
the crew during an
off-nominal
condition leading
to a failure to take
corrective action
when required. | TBD | Failure of a thermistor would provide readings that are contradicted by the other three thermistors. | TM 1, 2, 3 and 4 can be used to monitor the temperature profile in the combustion chamber. This provides a redundant function. | | | | FOMA-06-09:
Reads a
temperature that
is
Higher than
actual. | 2R | Provides incorrect data to computer and crew. | Could mislead
the crew during a
nominal condition
leading to a
corrective action
which is not
required. | TBD | Failure of a thermistor would provide readings that are contradicted by the other three thermistors. | TM 1, 2, 3 and 4 can be used to monitor the temperature profile in the combustion chamber. This provides a redundant function. | | | | FOMA -06-10:
Fails to operate.
No output. | 1R | Provides NO data to computer and crew. | No data available on temperature profile in chamber. Loss of monitoring capability. | TBD | Failure of a thermistor would provide readings that are contradicted by the other three thermistors. | TM 1, 2, 3 and 4 can
be used to monitor the
temperature profile in
the combustion
chamber. This provides
a redundant function. | | | | FOMA -06-11:
Leakage | 1R | Release of
"pre" or post
combustion
gases into CIR. | Possible fire or toxic hazard. | TBD | Pressure
transducers
would indicate a
drop in chamber
pressure with
solenoid valves
closed. | The fill operation would be shutdown and the chamber would be vented. Off nominal procedure would be carried out to fault isolate to the transducer. The leak would be eliminated by a maintenance action. | | Quick
Disconnects | To provide connection of input gas lines to the combustion chamber. QD 11 , 12, and 13. | FOMA-06-12:
Will not engage | 2R | Cannot provide input gas supply to the combustion chamber. | Loss of
Combustion
chamber function.
Cannot perform
experiments. | Disconnect
coupler and
nipple-spring
failure. | Visual | Spring designed to avoid fatigue. Correct Installation procedures must be practiced. | |----------------------|---|---
----|--|---|--|---|--| | | | FOMA -06-13 :
Difficult or unable
to dis-engage | 2R | Cannot perform
maintenance
action on a
leaking QD. | Loss of
Combustion
chamber function.
Cannot perform
experiments. | Locking balls
deform
nipple.
Caused by
excessive
vibration. | Visual | The QD design must be qualified for flight vibration levels. | | | | FOMA-06-14:
Leakage in
connected or
disconnected
position | 1R | Leakage of pre-combustion gases or post-combustion gases into the CIR. | Loss of Combustion chamber function. Cannot perform experiments. Hazard- Release of flammable gases into the CIR. | Disconnect
coupler &
nipple-
Failure of O-
ring caused
by damage,
wear or
aging | PT 16, 17, 28, and 29 would indicate a loss of pressure. In the combustion chamber. | Secondary metal-to-metal redundant seal. Disconnection or connection conducted with little or no pressure. Proper Oring selection. | | Mixture Fan | Provides optimum mixture for a particular composition of gases in the chamber. (noted as FAN) | FOMA-06-14:
Fails to Operate. | 3 | Failure to obtain Optimum mixture. | None. | Electrical
failure of
Fan: short
or open
circuit. | Current readout on Fan circuit would show a over-current or open-circuit condition. | Fan would have to be qualified for flight and tested prior to deployment on orbit. | | Filter | F 5, 6 and F10- | FOMA -06-15:
Fails to stop
contaminants | 2R | Contaminants
are passed on
through the
line. | GC:
Contamination
could skew
analysis results of
gas products. | Damage to
Filter such
as cracks or
holes. | None. | None. | |-------------------------------------|---|---|----|---|--|--|---|--| | | | FOMA-06-16:
Fails to stop some
contaminants. | 3 | Small amounts
of
contaminants
are passed on
through the
line. | Contaminants are permitted to enter Exhaust manifold or Exhaust /vent Package. | Filter
clogged with
excessive
Debris. | Data from other pressure transducers on the line would contradict transducer. | An off-nominal procedure is needed. | | | | FOMA -06-17:
Clogged | 2 | Stops or greatly reduces gas flow to GC, Exhaust manifold, or vent manifold. | Cannot properly
transfer gases to
GC for analysis or
cannot transfer
gases to Exhaust
Manifold from
chamber. | Damage to
Seals or
housing of
the filter. | Data from pressure transducers on the line such as PT 30, would contradict chamber transducer | Would shut down vent
operation and safe the
system. This off-
nominal Procedure | | | | FOMA -06-18
Leakage | 1R | Release of
combustion or
pre-combustion
gases in to
CIR. | Possible fire or toxic hazard. | Switch
mechanism
jammed by
debris. | readings. However, there is no transducer on the line from MV5 to MV4. (TBD) | TBD. | | Pressure
Switches
PS8 and PS9 | PS8 and PS9 are intended to sense the drop in combustion chamber pressure following a burn and vent, thereby resetting the timers controlling solenoid valves SV7 and SV8 | FOMA -06-19:
Fails to Switch
Mechanically. | 2R | Timers control-
ling SV7 and
SV8 are not re-
set. | Cannot re-open solenoid valves. Cannot flow fuel/pre-mixed fuel into chamber. | Electrical
short or open | IOP and FCU will
not receive a
signal showing
that SV7 and SV8
are open. State of
timers will show
that they are not
re-set. | TBD | | | in the Fuel/pre-mix Fuel manifold. | FOMA -06-20:
Fails to send
Reset
signal | 2R | Cannot re-set
timers control-
ling SV 7 and
8. | Cannot re-open
solenoid valves.
Cannot flow
fuel/pre-mixed fuel
into chamber. | Holes,
cracks, or
loose
mechanical
fittings. | (same as above) | TBD | | | | FOMA -06-21:
External leakage
from mechanical
connection | 1R | Possible
leakage of pre
combust-ion or
post
combustion
gases into CIR. | Possible fire or toxic hazard. | TBD | TBD | TBD | | O a mala continua | The combined on the C | FOMA 00 00: | | O - mala ti - m | D-1 | T | 4 1 | La ala 1116 a a fi da a | 0 | |--------------------|----------------------------|---------------|---|-------------------|----------------------|---|------------------------------|-------------------------|----------------------------| | Combustion | The combustion chamber | FOMA -06-22: | 1 | Combustion | Release of pre- | | Improper | Inability of the | Combustion Chamber | | Chamber | contains various mixtures | Burst/Rupture | | chamber | combustion gases | | design: | chamber to hold a | will be designed with a | | (includes | of combustible gases and | | | cracks open. | creates a | | Over- | vacuum. Pressure | structural factor of | | optional ports, | fuels and the actual | | | Release of | Flammability | | pressurizatio | transducers | safety that will be | | rear end cap. | combustion of these fuels. | | | contained | hazard and | | 'n | readings inside | xxMDP (based on | | window | Various sensors provide | | | gases into CIR. | release of post- | | caused by | the chamber (PT | yield) and xxMDP | | assemblies. | monitoring data on | | | Worstcase: | combustion gases | | loss of | 28 and PT 29) | based on ultimate. The | | chamber window | temperature and pressure | | | Chamber burst | creates a toxicity | | control on | would indicate the | Chamber will be | | | | | | results in | , | | | condition. | | | structural | in the chamber or on gas | | | | hazard. Inability to | | pressurizatio | Condition. | designed as a pressure | | section, interface | input and output lines | | | release of | contain | | n source or | | vessel containing | | resource ring, | connecting to the | | | gases into CIR | combustion gases | | adiabatic | | hazardous fluids and | | and lid.) | combustion chamber. | | | and projectiles | results in a | | combustion | | tested to comply with | | | | | | with high | termination of all | | in chamber | | the intent of MIL-STD- | | | | | | energy. | experiments and a | | combines | | 1522A. (Approach A) | | | | | | (example: | system shut-down. | | with | | as modified by NSTS | | | | | | Fragmentation | In the worst case | | insufficient | | 1700.7B, para. 208.4a. | | | | | | of chamber | scenario, escaped | | margin of | | A hydrostatic proof test | | | | | | windows) In | gases may lead to | | safety on | | will be performed at 1.5 | | | | | | worst case, | fire or toxicity | | structural | | x chamber MDP. A | | | | | | Fire and toxicity | threat | | strength. 2. | | separate test will be | | | | | | hazard possible | (crew injury), and | | selection of | | conducted without | | | | | | with damage | damage to other | | materials | | water to test the | | | | | | to surrounding | components of the | | susceptible | | chamber windows. | | | | | | components. | CIR. | | to stress- | | Materials will be | | | | | | components. | CIR. | | corrosion | | selected on the basis | cracking, 3. | | of their compatibility | | | | | | | | | Gaseous | | with experiment fluids | | | | | | | | | chemical | | and cleaning agents in | | | | | | | | | composition/ | | accordance with | | | | | | | | | Hardware | | MSFC-HDBK-527/JSC | | | | | | | | | material in- | | 09604/MAPTIS | | | | | | | | | compatibility. | | database or approved | | | | | | | | | 4. Un- | | MUA. There are at | | | | | | | | | detected | | least 3 controls on pre- | | | | | | | | | damage from | | mix fuel flow to | | | | | | | | | shock during | | preclude conditions for | | | | | | | | | ground | | adiabatic combustion: | | | | | | | | | processing | | 1.) Pressure Regulator, | | | | | | | | | or | | 2.) IOP monitors | | | | | | | | | launch/assen | | Pressure transducers | | | | | | | | | t vibration. | | in pre-mix fuel manifold | | | | | | | | | . VIDIGUOII. | | and chamber, 3.) fuel | | | | | | | | | | | manifold has pressure | | | | | | | | | | | switch to shut solenoid | valve. And (4) – For | | | | | | | | | | | experiments with non- | | | | | | | | | | | continuous flow of fuel, | | | | | | | | | | | igniters will be inhibited | | | | | | | | | | | until GC identifies | | | | | | | | | | | correct mixture. | | | | | | | | | | | | | | I | | | 1 | 1 | I | | | | |---
---|--|-----|--|---|---|--|--|---| | Combustion chamber (includes optional ports, rear end cap, window assemblies, chamber window structural section, interface resource ring, and lid.) | The combustion chamber contains various mixtures of combustible gases and fuels and the actual combustion of these fuels. Various sensors provide monitoring data on temperature and pressure in the chamber or on gas input and output lines connecting to the combustion chamber. | FOMA -06-23:
External Leakage | 1R | Release of contained gases into CIR. | Release of pre- combustion gases creates a Flammability hazard and release of post- combustion gases creates a toxicity hazard. Inability to contain combustion gases results in a termination of all experiments and a system shut-down. In the worst case scenario, escaped gases may lead to fire or toxicity threat (crew injury), and damage to other components of the CIR. | | Single seal Failure of Chamber windows, Chamber window glass crack occurs. (Critical flaws not caught at inspection) Crack growth from contact during installation of other CIR equipment. Seal failure from mechanical fittings/ or loose fittings on resource ring. Leakage from defective optional ports. | | A hydrostatic proof test of the chamber shell will be performed at 1.5 x MDP. A separate test will be conducted without water to test the chamber windows. Design verification will include Fracture Mechanics and NDI on the chamber to screen for critical initial flaw size. Seals will be tested on a ground unit for life and durability. Seals will be scheduled for change out based on testing and analysis with an adequate safety factor. A on-orbit Leak Integrity Check will be conducted before toxic test points. Functional testing of the chamber and associated diagnostics will be performed at the launch site and on-orbit to detect glass breakage. | | Combustion
Chamber
Windows (8
total) | The 8 windows are symmetrically located around the outside of the chamber and provide optical access for the diagnostic packages. | FOMA-06-24a:
Blemishing of
Windows. | 2R | Loss of / or
distortion of
optical data. | Unable to carry out combustion exper-iments. | | The chemical effects of combustion gases enhanced by the thermal energy of combustion and time. | A distorted image would be indicative of a problem with the optics. A fault isolation procedure would rule out diagnostics and chamber windows would be checked. | The windows have been designed to be removable from the inside of the chamber for service and change-out. | | | | FOMA -06-24b:
Chamber
windows
cannot be
removed. | TBD | TBD | TBD | | TBD | TBD | TBD | | | | | | | I | 1 | | | | |---|-----|--|-----|-----|-----|-----|-----|-----|-----| | Principle
Investigator
Unique
Hardware
(PIUH) | | FOMA-06-xx: Failure of Thermocouple. (Reads temperature to be higher than actual, lower than actual, or gives no output) | TBD | | | FOMA-06-xy:
Failure of
Radiometer.
(Measures light
intensity to be
greater than
actual, lower than
actual, or gives
no output) | | | | | | | | | | | FOMA -06-xz:
Igniter failure:
Fails to ignite
FOMA -06-xz:
Igniter failure:
Intermittent
Failure to ignite | | | | | | | | | | | FOMA -06-xz:
Igniter failure:
Inadvertent
ignition | | | | | | | | | Pump 3 | TBD | Pressure Switch
PS5 | TBD | Check Valves
CV 1,2,10,11 | TBD | Thermocouple TC2 | TBD | Pressure
Transducer
PT25 | TBD | Oxygen sensor
O2S1 | TBD ## TABLE VII. FMEA WORKSHEET FOR THE FOMA Gas Chromatograph *MIL-STD-1522A test requirement modified as per NSTS 1700.7B paragraph 208.4. | Item | Schematic | Function | Failure mode and failure | Crit | Local effect | System effect | Station/Crew | Potential | Detection | Compensating | |----------------------|-----------|---|---|------|---|---|--------------|---|---|--| | | ID | | mode number | | | | Effects | causes | Method | Provision | | Gas
Chromatograph | GC | Verify combustion atmosphere created by either partial pressure or dynamic mixing methods. Verify post-combustion atmosphere to insure concentrations | FOMA -07-1 No output | 3 | Loss of
function. No
data output. | Loss of primary capability to verify that concentrations of gaseous mixtures (either before or after combustion) are within specified ranges for burning or venting. In the pre- ignition phase would result in a "Hold" on Ignition. | All TBD | Electrical
open, short, or
blockage of
GC flow path
tube by
particulate
contaminants. | No data
signal from
GC. | Critical blockage diameter in rela-tion to contam-inants is >10 microns. 10 micron filters F7 and F8 are locat-ed on GC input lines and on GC itself. | | | | are at acceptable vent levels. | FOMA -07-2 Erroneous measurement (Higher than actual) | 2R | Incorrect data output to FCU. | See remarks above. In the case where GC reads higher than actual (erroneous measurement) it is possible that a decision could be made which places a hold on ignition. Venting may still be achieved but would require additional dilution for dumping. | | Voltage or current drift out of spec. | Will detect
peaks &
values out of
range. | Note: Normally, gas calibration standards are run initially. The standards pro-vide a measure of resolution and sensitivity and are certified with respect to purity. A trained GC operator will be alerted to the presence of negative peaks and values that fall outside of the expected range. MFC readings and delta pressure readings can still be used as a backup f or determining chamber composition. | | FOMA-07-3 Erroneous measurement (Lower than actual) | 2R | Incorrect data output to FCU. | In the case where GC reads lower than actual (erroneous measurement) it is possible that a decision could be made which places a hold on ignition. Venting may still be achieved but would require additional dilution for dumping. | Voltage or
current drift
out of spec. | Will detect
peaks &
values out of
range. | See note above. | |---|----|--|---|---|---|---| | FOMA -07-4 Intermittent output | 2R | Incomplete data | Loss of primary capability to verify that concentrations of gaseous mixtures (either before or after combustion) are within specified ranges for burning or venting. In the pre- ignition phase would result in a "Hold" on Ignition. | Loose
circuit
connections
and/or loose
internal
components. | Will detect
incom-plete
data. | GC must be qualified to withstand launch vibe levels. | | FOMA -07-5 Leakage | 2R | Release of Ar
and He gases
into CIR. | Loss of carrier gas
required for diagnostics.
Not a fire hazard and
will not effect O2
content in the lab. | Failure of internal and/or External seals or joints. | Will detect no output or incomplete data from GC. | GC must be leak tested and qualified for flight. | | Carrier gas bottles | GB4 Ar
GB5 He | Allows the gas sample from the chamber to be transported through the columns of the | FOMA -07-6 Burst | 1 | Loss of
Function in
GC columns. | High energy projectiles,
and release of gases
into CIR.
Hazard. | | Stress crack
growth due to
pressure or
launch loads. | Visual & immed-iate. | Design would
be for LBB:
MIL-STD-
1522A.
Positive Margin
for MBP. Hold | |----------------------|------------------|---|--|-----|---|--|---------|---|--|---| | | | GC for separation of individual components. The bottles are pressurized to | FOMA -07-7 Leakage | 2R | Loss of
Function in
GC columns. | Release of gases into CIR. | | Crack growth in bottle wall. Creates leak. | PT19 or 20
may read
low.
TBD. | on ignition or vent. FI to bottle. Go to Off-nominal Proc. Bottles should go | | | | 2000 psi. | FOMA-07-8 Provides
Contaminated Gas
supply | 2R | Loss of
Function in
GC columns.
Cannot shut
down gas flow
from bottle. | Readings of GC will be distorted. Cannot properly measure gas compositions To verify that they are correct. | | Bottle did not comply with contamination control plan. | | through a contamination control process. Redundant filtering in design. | | | | | | | | loss of ability to shut
down gas flow from
source in an
emergency. | | Corrosion or | PT 19 or PT | Valves should | | Valves | | To contain the carrier gas in the gas bottle | FOMA-07-9 Stuck
Open | 2R | Loss of GC column function: cannot achieve | Results in failure of the GC to perform its function. Cannot proceed with ignition or venting. | | contamination | 20 show pressure increase. | be tested and inspected. Qualified for flight. | | | | | FOMA-07-10 Stuck
Closed | 2R | sample
separation. Release of Ar
or He into GC
package. Loss of | Release of Ar or He into CIR. Loss of carrier gas required for diagnostics. Not a fire hazard and will not | | Corrosion or contamination | PT 19 or PT
20 show no
pressure
increase. | Valves should
be tested and
inspected.
Qualified for
flight. | | | | | FOMA-07-11 Leakage | TBD | working gas. | effect O2 content in the lab. Results in failure of the GC to perform its function. Cannot proceed with ignition or venting. | | Corrosion or contamination Possible damage to valve. | PT 19 or PT
20 show
reduced
pressure
increase. | Valves should
be tested and
inspected.
Qualified for
flight. | | Quick
Disconnects | QD09 &
QD10 | To provide connection of the carrier gas bottles to the CIR FOMA. | FOMA -07-12 :
Will not engage | 2R | Cannot
provide
carrier gas
supply. | Loss of GC system function. | All TBD | Disconnect
coupler and
nipple-spring
failure. | visual | Spring designed to avoid fatigue. Correct Installation procedures | | | | | | | | | | | must <u>be</u>
practiced. | |-----------------|-----------|---|--|--------|---|--|--|--|--| | | | | FOMA -07-13 :
Difficult or unable to dis-
engage | 2
R | Cannot
provide
Re-
placement of
Carrier gas
supply bottle. | Cannot proceed with GC function. Loss of function. | Locking balls
deform nipple.
Caused by
excessive
vibration. | Visual | The QD design
must be
qualified for
flight vibration
levels. | | | | | FOMA -07-14:
Leakage in connected or
disconnected position | 2R | Loss of carrier gas. | Loss of carrier gas required for diagnostics. Not a fire hazard and will not effect O2 content in the lab. Results in failure of the GC to perform its function. | Disconnect
coupler &
nipple-
Failure of O-
ring caused by
damage, wear
or aging. | PT 19 and
20 would
read a
pressure that
is lower than
expected. | Secondary
metal-to-metal
redundant seal.
Disconnection
or connection
conducted with
little or no
pressure.
Proper O-ring
selection. | | In-Line Filters | F7 and F8 | To prevent particulates from entering the GC and the FOMA system during a Bottle changeout. | FOMA -07-15:
Fails to stop
contaminants
FOMA -07-16: | 2R | Worst case:
Could cause
GC to fail in
no-output
mode. | Worst case: Loss of ability to verify gaseous mixtures. | Blockage of
GC
Internal flow
path. | No data
signal from
GC. | Critical blockage diameter in relation to contaminants is >10 microns. 10 micron filters F7 and F8 are located on GC input lines and on GC itself. | | | | | Fails to stop some particles | 3 | None. | None. | Very small
diameter, less
than 10
microns. | None. | Must adhere to a Contamination control program. | | | | | FOMA-07-17:
Clogged | 2R | Blockage of
Ar or He
flow. Loss of
GC column
function. | Worst case: Loss of ability to verify gaseous mixtures. | Contaminated gas supply or contaminated GC assembly. | Poor data or
no data
signal
received
from GC.
Low
pressure
reading by
PT 19 and
20. | TBD | | | | | FOMA -07-18:
External Leakage | 2R | Loss of Ar
or He flow
rate. | Worst case: Loss of ability to verify gaseous mixtures. | Housing or
seals
On filter
damaged. (in
assembly-
went
undetected or
by
external
environment) | Poor data or
no data
signal
received
from GC.
Low
pressure
reading by
PT 19 and
20. | TBD | |-------------------------|--------------|---|---|----|--|--|--|--|---| | | | | | | | | | | | | Pressure
Regulators | PR6 & PR 7 | Maintain line
pressure at 80
psig. | FOMA-07-19 Regulates pressure to a level that is higher than required. | 2R | Pressure
build-up in
line. | Worst case: If Regulator & pressure relief valve failed, overpressure could result for GC. | Loss of
setting
/damage from
launch vibe. | PT 19 and
20 will read
high
pressure. | Will initiate
pressure relief.
Pressure will be
relieved at
RV1,2,3, or 4. | | | | | FOMA-07-20:
Regulates pressure to
a level that is Lower
than required. | 2R | Pressure in
line is below
what is
Normal. | Worst case: GC sampling process stopped or GC gives inaccurate data. Worst Case: GC sampling process stopped or GC gives inaccurate data. | Loss of setting /damage from launch vibe. | PT 19 and
20 will read
low
pressure. | Would fault isolate to PR 6 or 7. Remove and replace. Re-start fill operation. | | | | | FOMA -07-21:
Leakage | 2R | Pressure in line is below what is Normal. | Worst case:
GC sampling process
stopped. | Loss of
setting
/damage from
launch vibe. | PT 19 and
20 will read
low
pressure. | Would fault
isolate to PR 6
or 7. Remove
and replace.
Re-start fill
operation. | | Pressure
Transducers | PT 19 and 20 | Record the pressure input in line after the pressure regulators | FOMA-07-22:
Reads a pressure that
is higher than actual | 2R | Worst case: Might cause IOP to command solenoid valves to close and shut off gas flow to GC. | Worst case:
GC sampling process
stopped or GC data is
poor. | Loss of signal,
Performance
drifts out of
spec. | TBD | TBD | | | | | FOMA-07-23:
Reads a pressure that
is lower than actual | 2R | Worst case: Pressure in line drops very low. Crew /computer Not informed. | Worst case: Loss of flow and GC sampling process stopped or GC gives inaccurate data. | Loss of signal,
Performance
drifts out of
spec. | TBD |
Pressure
control back-up
by PR6 & 7,
and also RV1 –
4 to avoid
over-
pressurization . | |---------------------------|--------------------|--|--|----|---|---|--|--|---| | | | | FOMA -07-24:
Leakage | 2R | Pressure in
line is below
what is
normal
/expected. | | Damage to
transducer /
seal failure | TBD | TBD | | Pressure Relief
Valves | RV1,2,3,
and 4. | RV1 and 3 set
at
105 psia to
prevent over-
pressurization
of
GC. RV2 and
RV4 set at 107
psia to act as | FOMA -07-25:
Valve fails to open. | 2R | Redundant
valve
will be
actuated. | Worst case: If both valves fail could damage GC and stop GC function. | Internal part
failure of
valve. | PT 19 or 20
would
detect build
up of
pressure
between
regulator
and
solenoid | Either SV25 or
SV26
(whichever
applies) would
be commanded
to close to cut
off pressure
input to GC. | | | | redundant
pressure relief
valves. | FOMA -07-26:
Valve fails to close. | 2R | Provides
leakage path
out from line. | Loss of GC function. Worst case: Loss of GC function. | Contamination or corrosion. | valve. | TBD | | | | | FOMA -07-27:
Valve leaks. | 2R | Provides leakage path out from line. | | Damage to valve or seal failure. | | TBD | | | | | | | | | | See
Comment
(*) as
Shown
below. | | ^(*) Once the carrier gas line pressure is lost, the GC will not take a sample until the GC is reset. It is possible however, that the pressure relief valve could be leaking at a low rate of loss. This might still allow the carrier gas to be delivered to the GC at the correct pressure. Another possible scenario is that SV25 or SV26 could be closed and a leakage failure may occur. Until the line pressure drops below 80 psi (set regulator pressure) and either PT 19 or 20 read low pressure, the leak could go undetected. * Pressure transducer internal to the column module in the Gas Chromatograph | | | | the Gas Chromat | 0 1 | | | 1 | | DT 4 11 | | |----------------------------|-------------|--|---|-----|--|--|---|--|---|---| | Solenoid
valves | SV25 & SV26 | These valves open to allow carrier gas to flow to the GC. The valves are | FOMA -07-28:
Valves will not
open. | 2R | Cannot flow
Ar or He to
GC. | Ar or He carrier gas
required for GC function
is not provided. Loss of
GC function. | | Damage of internal parts. | PT * would
measure low
pressure
output from
GC. | TBD | | | | normally
closed. | FOMA-07-29:
Valves will not
close. | 2R | Cannot stop
flow of
carrier gas
(either Ar or
He). | May over-pressurize line in the event of pressure regulator failure. Possible damage of GC in worst case scenario. | | Contamination or corrosion of the valve seat. | PT * would
measure high
pressure
output from
GC. | PT * monitors
pressure
output from
GC, and
pressure
regulator is
primary. | | | | | FOMA -07-30:
Leakage | 2R | Loss of
carrier gas
supply
needed for
GC analysis. | Possible loss of GC system function. | | Cracked seal
or
Other valve
damage. | PT * would
measure low
pressure
output from
GC. | TBD | | Calibration
Gas Bottles | GB6 | Allow the GC
to be calibrated
for qualitative
and
quantitative
analysis. The
bottles will be
pressurized at | FOMA-07-31:
Burst | 1 | Rapid loss of
gases
needed for
calibration of
GC. | High energy projectiles,
and release of gases into
CIR.
Hazard. | | Stresses cause crack growth to Critical crack size. Induced by pressure or launch loads. | Visual, loss of pressure at PT22 if bottle bursts while connected to CIR. | Must design
bottle to MIL-
STD 1522A
with positive
margin on
MBP. | | | | 2000 psig. | FOMA -07-32:
Leakage | 2R | Loss of
gases
needed for
calibration of
GC. | Unable to calibrate GC. | | Crack propagates under wall surface just enough to create a hole for leakage. | PT 22 would
measure a
loss of
pressure. | Must qualify
bottle for flight
vibration and
effective
internal
pressure. | | | | | FOMA -07-33:
Provides
contaminated
supply. | 2R | Contamin-
ation flows
into GC input
gas line. | In the worst case
scenario, contamination
may enter GC and affect
calibration adversely. | | Bottle supply contaminated. Supplier did not follow a contamination control plan. | May not be able detect contamination prior to the GC. | Implement contamination control for the gas bottle. | | Manual valve | MV8 | To contain the calibration gas in the bottle | FOMA -07-34:
Fails to open | 2R | Cannot obtain calibration gas for the GC. | Cannot calibrate GC. | Corrosion on valve or damage. | PT 22 reads
low pressure. | MV8 should be qualified for flight. | |---------------------|-----|--|--|----|---|----------------------|---|--|---| | | | | FOMA -07-35:
Fails to close | 2R | Loss of calibration gas | Cannot calibrate GC. | Corrosion or contamination. | PT22 reading indicates valve open. | | | | | | FOMA -07-36:
Leakage | 2R | Loss of calibration gas | Cannot calibrate GC. | Seal failure or damage to housing. | PT22 reads
lower pressure
than expected. | | | Quick
disconnect | QD8 | Provides connection of calibration gas bottle to FOMA. | FOMA-07-37:
Will not
engage | 2R | Cannot obtain calibration gas for the GC. | Cannot calibrate GC. | Disconnect
coupler and
nipple-spring
failure. | Visual | Spring designed to avoid fatigue. Correct Installation procedures must be practiced. | | | | | FOMA -07-38:
Leakage in
connected or
disconnected
position | 2R | Loss of calibration gas | Cannot calibrate GC. | Disconnect
coupler &
nipple- Failure
of O-ring
caused by
damage, wear
or aging. | PT 22 would
read a
pressure that is
lower than
expected. | Secondary metal-to-metal redundant seal. Disconnection or connection conducted with little or no pressure. Proper O-ring selection. | | | | | FOMA -07-39:
Difficult or
unable to dis-
Engage. | 2R | Cannot
connect new
gas bottle for
re-calibration | Cannot calibrate GC. | Locking balls
deform nipple.
Caused by
excessive
vibration. | Visual | The QD design
must be
qualified for
flight vibration
levels. | | Pressure
Transducer | PT 22 | Monitor the calibration gas pressure input to GC. | FOMA-07-40:
No output | 2R | Loss of
pressure data
"after" QD8
and "before"
PR5. | Computer/crew would rely on reading now from PT 23 after pressure regulator. | Internal open-
circuit or
short.
Internal
mechanical
failure. | Reading from
PT 23 on
pressure profile
but no reading
from PT 22. | TBD | |------------------------|-------|---|--|----|---|--|---|---|---| | | | | FOMA-07-41:
Reads
pressure
higher than
actual | 2R | Erroneous
data on line
pressure. | In worst case scenario:
May cause a pre-
mature shut off of gas
flow out of bottle. | Performance
of
Transducer
drifts over
time and out-
of-spec. | Readings from
PT 22 would
not yield correct
pressure. | Might require a third transducer to determine a transducer malfunction on the GC calibration gas line. | | | | | FOMA -07-42:
Reads
pressure that is
low er than
actual | 2R | Erroneous
data on line
pressure. | Failure could cause a pre-mature change out of the cal-ibration bottle. Could result in using up resources at a quick rate over what is anticipated. | Performance
of
Transducer
drifts over
time and
out-
of-spec. | Readings from
PT 22 would
not yield correct
pressure
profile. | Might require
a thir d
transducer to
determine a
transducer
malfunction
on the GC
calibration
gas line. | | | | | FOMA -07-43:
Leakage | 2R | Loss of calibration gas. | Worst case: may not be able to calibrate GC. | Seal failure or
damage to
pressure
transducer. | Readings from
PT 23 will show
pressure loss. | TBD | | Solenoid valve | SV27 | Flow control of calibration gas to the GC | FOMA - 07-44:
Valve fails to
open | 2R | Cannot flow
Calibration
gas to the GC. | Cannot calibrate GC. | Solenoid coil
open-circuit.
Most likely "coil
burn-out". | PT 23 reads
low pressure
when valve is
commanded
open. | SV27 should
be designed so
that defective
coil can be
replaced. | | | | | FOMA -07-45:
Valve fails to
close | 2R | Cannot shut
down
calibration gas
flow to GC | Worst case: If pressure regulator fails-to-regulate, GC could be damaged. Cannot control calibration process and have bottle re-loads. | Seat
contaminated
with debris, or
corrosion in
mechanical
mechanism. | PT 23 will
indicate a
pressure that is
higher than
expected | Should be able to fault isolate to SV27, remove and replace valve. | | | | 1 | 1 | | | 1 | ı | ı | | |-----------------------|-----|--|--|-----|---|---|--|--|--| | | | | FOMA -07-46:
Leakage | 2R | Loss of calibration gas. | May not be able to calibrate GC due to loss of calibration gas. | Seal failure or
damage to
housing of
valve. | PT 23 will
indicate a
pressure drop
from what is
expected | Shut down of
gas calibration.
Leak test, Fault
isolate to leak.
Remove and
replace valve.
CV4 would be
removed and
replaced. | | Check valve | CV4 | Check valve is intended as a protection: to prevent a sample of chamber gas from contaminating the calibration gas supply. | FOMA-07-47:
Valve fails to
allow f low-
through of
calibration gas
when required. | 2R | Cannot flow
Calibration
gas to the GC. | Cannot calibrate GC. | TBD | PT 23 reads
low pressure
after SV27 is
commanded
open. PT22
would read
high and
indicate gas
was not
flowing. | CV4 should be qualified for flight . | | | | | FOMA-07-48:
Valve fails to
isolate cal-
ibration gas
bottle as
intended. | 2 R | Contamination of calibration gas supply bottle. | Subsequent calibrations of GC may be incorrect. Scientific data may be incorrect. Could adversely affect GC function. Decisions could be made to ignite Mixtures in the chamber that are incorrect. | TBD | PT 22 may show a unexpected pressure profile over time that indicates some back-streaming of sample gas from the chamnber. TBD. | CV4 should be qualified for flight. | | | | | FOMA -07-49:
Leakage | 2 R | Loss of calibration gas. | May reduce the amount of calibration gas needed by the GC in order to successfully perform calibration. | Seal failure or
damage to
valve. | PT 23 may
show a drop in
pressure that is
not expected. | | | Pressure
Regulator | PR5 | To regulate sample gas delivery to the GC. | FOMA -07-50:
Over-regulates
Gas pressure
input to GC.
Reduces | 2R | Low gas
pressure and
flow rate of
sample gas
into GC. | If sample mass is not large enough, GC analysis results may be inaccurate. | Loss of setting/
damage from
launch vibe. | PT 23 reads a pressure that is lower than required. | Will qualify PR5 pressure regulator design for flight and verify | | pressure too low. FOMA-07-51: Fails to regulate 2R Gas pressure input to GC. Input pressureis too high. | High gas
pressure and
flow rate of
sample gas
into GC. | Unregulated or poorly regulated input pressure could damage GC. | Loss of setting/
damage from
launch vibe. | PT 23 reads
high pressure
input to GC. | pressure
regulator
operates as
part of the
integrated
system
See above. | |--|--|---|---|---|---| | FOMA -07-52: 11
Leakage | R Loss of sample gas from input line to GC. | If sample mass is not large enough, GC analysis results may be inaccurate. Worst case: release of pre or postignition sample from combustion chamber which is flammable or toxic. | damage from launch vibe. | PT 23 reads
pressure input
to GC
decreasing. | See above. | ^{*}Loss of calibration gas into the CIR if SV27 was open and calibration procedure was in process. | Pressure | PT 23 | Measure the | FOMA-07-53: | 2R | Incorrect | False alarm: may cause | Performance | TBD | Transducers | |------------|-------|-----------------|------------------|----|----------------|--|-----------------|-----------------|----------------| | Transducer | | gas input | Reads a | | data | an action to close SV 27 | drift out of | | will be tested | | | | pressure to the | pressure that is | | about inlet | when it is not necessary. | spec. | | as part of the | | | | GC. | higher than | | pressure to | Stops flow of sample gas. | | | integrated | | | | | actual | | GC. | Stops GC analysis. | | | system and | | | | | | | | | | | qualified for | | | | | | | | | | | flight. | | | | | | | | False alarm: may cause | Performance | TBD | | | | | | FOMA -07-54: | 2R | Incorrect | an action to close SV 27 | drift out of | | Same | | | | | Reads a | | data | when it is not necessary. | spec. | | | | | | | pressure that is | | about inlet | Stops flow of sample gas. | | | | | | | | lower than | | pressure to | Stops GC analysis. | | | | | | | | actual | | GC. | FOMA -07-55: | 2R | No data | Off nominal procedureTBD | Internal | No output | Same | | | | | Fails to | | about inlet | : may cause an action to | damage | signal from the | | | | | | function- No | | pressure to | close SV 27 when it is not | | transducer is | | | | | | output | | GC. | necessary. Stops flow of | | provided to the | | | | | | | | | sample gas. Stops GC | | IOP. | | | | | | | | | analysis. | | | | | | | | FOMA 07 FFA | 1R | 1 | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | Cool foilure or | TDD | | | | | | FOMA -07-55A | TK | Loss of | Worst case: Loss of gas | Seal failure or | TBD | same | | | | | Leakage | | calibration or | sample from chamber- | damage to | | | | | | | | | sample gas. | released into CIR. * | transducer | | | | | | | | | | | | | | | In-line-Filter | F9 | To prevent particulates with a diameter greater than 10 microns from entering the GC. | FOMA - 07 - 56:
Allows
contaminants
to enter GC. | 2R | Possible
blockage of
GC flow path
tube by
particulate
contaminants | Worst case: loss of GC Functionality. | Calibration gas bottle is a contaminated source, or large particles from combustion chamber sample. [There would also have to be a hole in the filter or a filter installed with a micron rating greater than 10 microns.] | May be able to detect this type of failure by distorted GC readings. Worst case: May not be able to detect prior to loss of GC function. | Calibration gas bottle must be manufactured and filled under contamination control procedures. Gas mixtures burned in chamber must be planned to preclude particulates that exceed 10 micron diameter. | |------------------------|-------|---|---|----|---|---|--|--|--| | | | | FOMA -07-57:
Clogged. | 2R | Blockage of inlet flow path to GC. | Loss of GC function. | Untested GC
system prior to
Flight. | PT 22 and 23
show normal
readings and
GC provides
no useful data. | Prior to flight
GC package
should be
checked-out. | | | | | FOMA -07-58:
Leakage. | 1R | Loss of gas
sample. | Worst case: loss of GC function and release or pre-
ignition or post-ignition sample gas from chamber. | Undetected damage to F9. | Pressure drop
read by PT 23. | TBD | | Pressure
Transducer | PT 21 | Measures the pressure in the gas sample line input to the GC | FOMA-07-59:
Reads a
pressure that is
higher than
actual | 2R | Incorrect
data
about inlet
pressure to
GC. | False alarm: may cause an action to close SV 15 when it is not necessary. Stops flow of sample gas. Stops GC analysis. | Performance
drift out of
specification | TBD | TBD | | | | | FOMA -07-60:
Reads a
pressure that is
lower than
actual | 2R | Incorrect
data
about inlet
pressure to
GC. | False alarm: may cause an action to close SV 15 when it is not necessary. Stops flow of sample gas. Stops GC analysis. | Performance
drift out of
specification | TBD | TBD | | | | | FOMA -07-61:
Fails to
operate.
No reading | 2R | No data
about inlet
pressure to
GC. | Off nominal procedureTBD: may cause an action to close SV 15 when it is not necessary. Stops flow of sample gas. Stops GC analysis. | Internal
damage | TBD | TBD | | | | | FOMA -07-62:
Leakage | 1R | Leakage of
sample gas
from
chamber into
GC package
& CIR | Could result in leakage of either pre-combustion mixture (fuel and oxygen) or Post-combustion products. (toxic) | Seal failure or
damage to
transducer
/connection
from launch
vibe | TBD | TBD | |-------------|-----|--|---|-----|---|--|--|--|---| | Check Valve | CV3 | Prevents calibration gas from entering the chamber sample line | FOMA -07-63:
Valve fails to
allow flow -
through of
chamber gas
when required. | 2 R | Cannot provide sample of chamber gas to GC. | Cannot perform analysis of chamber gas with GC. | TBD | PT 21 reads
pressure build-
up, and PT 23
reads low
pressure.
Previous
operation
shows
all other com-
ponents on
Cal-gas line
are OK. | TBD | | | | | FOMA -07-64:
Valve fails to
isolate
chamber
Gas line from
calibration gas. | 3 | Calibration
gas may be
able to back-
flow along
the chamber-
sample gas
line. | Chamber isolation valve SV 15 would be opened long enough to permit a sample of chamber gas to flow out but would then close. Some calibration gas would be trapped in this line. Might effect future readings by GC on chamber sample analysis. | TBD | TBD | TBD | | | | | FOMA -07-65:
Leakage | 1R | Leakage of pre or post combustion gases and/or calibration gas. | Release of pre-combustion mixture and/or calibration gas into CIR. | Poor seal on
valve or
damage to
exterior of
valve. | TBD | Valve should
be qualified for
launch and
flight
conditions. | | Check Valve | CV5 | To prevent back-flow to the GC during a sample vent. | FOMA -07-66:
Valve fails to
allow flow -
through of
chamber gas
when required. | 2R | Cannot vent sample | Cannot continue to perform analysis of other chamber gas samples with GC. | TBD | PT 14 will not
read the
expected
level of
pressure. | TBD | |-------------|-----|--|--|----|--|--|-----|---|---| | | | | FOMA-07-67:
Valve fails to
isolate GC
from sample
gas being
vented.
(allows back-
flow) | 3 | Sample gas back-flows into GC. | "erroneous measurement" | | The first sample taken by the GC after the back-flow occurred would show an "erroneous measuremen t" and the trained operator analyzing this data would notice. | More samples would have to be taken until the line was cleared of the back-flow gas. The number of additional samples depends on the amount of back-flow gas that entered the GC. The trained operator would know w hen a "correct" sample was taken. | | | | | FOMA -07-68:
Leakage | 1R | Leakage of
pre-com-
bustion
gases and/or
calibration
gas. | Release of pre or post combustion mixture and/or calibration gas into CIR. | TBD | TBD | TBD | | Check Valve | CV9 | To prevent
back-flow in
the GC,
sample line, or
calibration line
from the vent | FOMA-07-69:
Valve fails to
allow flow -
through of gas
when required. | 2R | Cannot vent sample | Cannot continue to perform analysis of other chamber gas samples with GC. | TBD | PT 14 will not
read the
expected
level of
pressure. | TBD | |-------------|-----|---|---|----|--|---|-----|---|--| | | | system during a purge. | FOMA-07-70:
Valve fails to
isolate GC,
sample and
calibration line
from sample
gas being
vented.
(allows back-
flow) | 3 | Sample gas back-flows into GC. | A GC sample could still be taken. Erroneous measurements would be observed until enough samples had been taken to clear the line of gas that should have been vented. | TBD | The first sample taken by the GC after the back-flow occurred would show an "erroneous measuremen t" and the trained operator analyzing this data would notice. | More samples would have to be taken until the line was cleared of the back-flow gas. The number of additional samples depends on the amount of back-flow gas that entered the GC. The trained operator would know when a "correct" sample was taken. | | | | | FOMA -07-71:
Leakage | 1R | Leakage of
pre or post
combustion
gases and/or
calibration
gas. | Release of pre-combustion mixture and/or calibration gas into CIR. | TBD | TBD | TBD | | Pressure
Transducer | PT 14 | Monitoring of pressure in sample vent line | FOMA -07-72:
No output | 3 | Loss of pressure data on vent line. | May result in a off-
nominal venting
procedure. | Loss of signal,
Leaking,
performance
drifts out-of-
spec. Open
circuit. | No data from
PT 14 flagged
by IOP. | May be able to open SV22 and allow flow through to PT 30 to check out the pressure reading. | |------------------------|-------|--|--|----|---|--|--|--|--| | | | | FOMA-07-73:
Reads a
pressure that is
higher than
actual | 3 | Incorrect data on
vent-line output
pressure from
GC. | May result in a off-
nominal venting
procedure. | Loss of signal,
Leaking,
perf ormance
drifts out-of-
spec. | Data from
PT14 is not as
expected
(make sense)
when
compared to
readings from
PT 30 and PT
23. | An off-nominal
procedure can
be developed
to work-around
the faulty
transducer. | | | | | FOMA - 07-74:
Reads a
pressure that is
lower than
actual | 3 | Incorrect data on
vent-line output
pressure from
GC. | May result in a off-
nominal venting
procedure. | Loss of signal,
Leaking,
performance
drifts out-of-
spec. | Data from
PT14 is not as
expected
(make sense)
when
compared to
readings from
PT 30 and PT
23. | An off-nominal
procedure can
be developed
to work-around
the faulty
transducer. | | | | | FOMA -07-75:
Leakage | 1R | External
Leakage | Leakage of pre or post
combustion gases into CIR. May cause a halt in venting and a stop on experiments. | Defective seal
or damage to
component. | PT 30 reads
lower pressure
than what is
expected. | May have to halt venting operation and remove and replace PT 14. | ## TABLE VIII. FMEA WORKSHEET FOR THE FOMA Exhaust Manifold *MIL-STD-1522A test requirement modified as per NSTS 1700.7B paragraph 208.4. | Item | Sche-
matic
ID | Function | Failure Mode and
Failure Mode Number | Crit. | Local Effect | System Effect | Station/Crew Effects | Detection Method/
Time-to-Effect=TE
/Time-to-Detect=TD | 1.Potential Causes and 2. Corrective Actions | |------------------------------|----------------------|---|---|------------|------------------------------------|---------------------------------------|------------------------------------|--|--| | FOMA-08: Exhaust
Manifold | | | | | | | | | | | Solenoid valve | | | FOMA -08-1: Valve fails
to open | All
TBD | All TBD unless otherwise indicated | All TBD unless
otherwise indicated | All TBD unless otherwise indicated | All TBD unless otherwise indicated | All TBD unless otherwise indicated | | | | | FOMA -08-2: Valve fails to close | | | | | | | | | | | FOMA -08-3: External
Leakage | | | | | | | | | | | FOMA -08-04: Internal
Leakage | | | | | | | | | | | FOMA -08-05:
Intermittent operation | | | | | | | | Check Valve | | To prevent back-flow of gas into the static mixer package | FOMA-08-06: Fails to open | | | | | | | | | | | FOMA -08-07:Fails to close | | | | | | | | | | | FOMA -08-08:
Intermittent operation | | | | | | | | | | | FOMA -08-09: External
Leakage | | | | | | | | | | | FOMA -08-10: Internal
Leakage | | | | | | | | Solenoid valve | | | FOMA -08-11: Fails to open | | | | | | | | | | FOMA -08-12: Fails to close | | | | | |----------------|---|--|--|--|--|--| | | | FOMA -08-13:
Intermittent operation | | | | | | | | FOMA -08-14: External Leakage | | | | | | | | FOMA -08-15: Internal
Leakage | | | | | | Solenoid valve | Allows a gas sample from the GC to enter either the adsorber cartridge or the vent path. | FOMA -08-16: Fails to open | | | | | | | | FOMA -08-17: Fails to close | | | | | | | | FOMA -08-18:
Intermittent operation | | | | | | | | FOMA -08-19: External Leakage | | | | | | | | FOMA -08-20: Internal
Leakage | | | | | | Solenoid Valve | When opened,
allows chamber gas
to enter adsorber
cartridge. When
adsorber cartridge is
removed, SV24 musiclose to provide a
closed system. | | | | | | | | | FOMA -08-22: Fails to close | | | | | | | | FOMA -08-23:
Intermittent operation | | | | | | | | FOMA -08-24: External Leakage | | | | | | | | FOMA -08-25: Internal
Leakage | | | | | | Pressure Transducer | PT 30 | gas pressure enter- | FOMA -08-26: Reads a pressure that is higher than actual | | | | |---------------------|-------|---------------------|--|--|--|--| | | | | FOMA -08-27: Reads a pressure that is lower than actual | | | | | | | | FOMA -08-28: Fails to operate: no data. | | | | | | | | FOMA -08-29: External
Leakage | | | 1.Vicon seal pressed against manifold and sealing face of transducer is cracked, damaged, worn, or deteriorated. | | Pressure Indicator | PI 5 | gas pressure in the | FOMA -08-30: Activates at a pressure above safe-pressure threshold | | | | | | | | FOMA -08-31: Activates
at a pressure below
safe-pressure threshold | | | | | | | | FOMA -08-32:Fails to activate | | | | | | | | FOMA -08-33:Inter-
mittent operation | | | | | | | | | | | | # TABLE IX. FMEA WORKSHEET FOR THE FOMA Adsorber Cartridge *MIL-STD-1522A test requirement modified as per NSTS 1700.7B paragraph 208.4. | Item | Sche-
matic
ID | Function | Failure Mode and Failure Mode Number | Crit. | Local Effect | System Effect | Station/Crew Effects | Detection Method/
Time-to-Effect=TE
/Time-to-Detect=TD | 1.Potential Causes and 2. Corrective Actions | |---------------------------------|----------------------|---|---|---|--------------|------------------------------------|------------------------------------|--|--| | FOMA -09: Adsorber
Cartridge | | | | | | | | | | | Manual Valve | MV9 | To provide isolation for the cartridge | FOMA -09-01:Fails to open | All TBD
unless
otherwise
indicated | | All TBD unless otherwise indicated | | | | | FOMA -09-02: Fails to close | | | | | | | | | | | FOMA -09-03:
Intermittent operation | | | | | | | | | | | FOMA -09-04: Internal
Leakage | | | | | | | | | | | FOMA -09-05: External
Leakage | | | | | | | | Manual Valve | MV10 | To provide isolation for the cartridge | FOMA -09-06:Fails to open | | | | | | | | | | | FOMA -09-07: Fails to close | | | | | | | | | | | FOMA -09-08:
Intermittent operation | | | | | | | | | | | FOMA -09-09: Internal
Leakage | | | | | | | | | | | FOMA -09-10: External
Leakage | | | | | | | | Quick Disconnect | QD6 | To provide transfer of gas from Adsorber cartridge to vent manifold | FOMA -09-11: Fails to
allow a safe/correct
and complete
connection | | | | | | | | | | | FOMA -09-12: Fails to allow disconnection | | | | | | | | | | | FOMA -09-13: External
Leakage | | | | | | | | | | | , . | | 1 | 1 | | |---|--------------|--|---|--|---|---|--| | | | | FOMA -09-14: Inhibits flow | | | | | | Quick Disconnect | QD7 | of gas from Exhaust manifold to Adsorber | FOMA -09-15: Fails to
allow a safe/correct
and complete
connection | | | | | | | | | FOMA -09-16: Fails to allow disconnection | | | | | | | | | FOMA -09-17: External Leakage | | | | | | | | | FOMA - 09-18: Inhibits flow | | | | | | Adsorber Cartridge | Item
name | Remove undesirable
gases from the post
combustion mixture
to acceptable vent-
ing concentrations | TBD | | | | | | FOMA -13: Pump
assembly and misc.
devices | | | | | | | | | Pump 1 and 2 | Item
name | To pump chamber gas through the adsorber cartridge | TBD | | | | | | Thermistors | TM 8,9 | To monitor the pump motor temperatures. | TBD | | | | | | Oxygen Sensor | O2S1 | To detect the concentration of oxygen exiting the chamber to be vented. | TBD | | | | | | Pressure Transducer | PT13 | 1.To measure the gas pressure exiting the adsorber cartridge 2. Provides 2nd. data point for the differential pressure across the cartridge. | TBD | | | | | | In Line Orifice | ORI | To reduce pressure
to 40 psi for gas
exiting along the
emergency vent path
when the ISS vent
valve is open. | TBD | | | | |-----------------------------|-----|---|-----|--|--|--| | Three-way manual ball valve | MV4 | Enables flow of gas
from the EVP vent
line or the emergen-
cy vent line with the
overboard vacuum
vent lines in the CIR. | TBD | | | | | Quick Disconnect | QD5 | Provides a connection to the overboard vacuum vent lines and allows transfer of gas from the FOMA to the overboard vacuum vent lines. | TBD | | | | | Filter | F7 | To protect SV19 and
the combustion
chamber from
particulate matter
existing in the pumps | | | | | ## 9.0 CRITICAL ITEMS LIST ## **TABLE X. Critical items List** | | T | 1 | A. Official items | 1 | |-----------------------|--------------|---------------|--|---| | Item | Reference to | Failure | Is There Failure | Provisions For | | Name | FMEA | Modes by | detection | Design/Test/Operation/Maintenance or | | | Worksheets | Number | | Corrective Action | | | | | | | | | | | | | | Gas Bottle | TBD | FOMA - 01 - 1 | Immediate effects such | 1.Structural failure. Stress cracking due to | | GB2 | | | as pressure loss in pre- | launch environment, or thermal effects. 2. | | | | | mix gas fill line | Would shutdown the system, remove any | | | | | registered by pressure transducers and PI2 | possible ignition sources, remove damaged bottle, ventilate area, Inspect for damage, | | | | | pressure indicator, | Conduct maintenance. | | | | | and/or visual indication | | | | | | that gas bottle has | | | | | | cracked open. | | | | | | | | | | | | | | | GB3 Gas | TBD | FOMA -03-1 | Visual, immediate | GB2 designed for: LBB, tested | | Bottle | | | effects. | as per MIL-STD 1522A* with positive margin of safety on | | | | | | burst/MDP and FS requirements. | | | | | | Proof tests. | | | | | | | | | | | | | | PR3 | TBD | FOMA -03- 35 | PT 26 would indicate | Design of pressure regulator is maintainable: | | Pressure
Regulator | | | pressure. | If regulator is leaking due to seal failure, entire regulator can be removed and | | Regulator | | | | replaced. Bottle size and amount of gas are | | | | | | selected to avoid flammability/toxic | | | | | |
substance concerns. | | | | | | | | GB-1 | TBD | FOMA -04-1 | Visual and | Design GB1 as LBB. Qualify per MIL-STD- | | Oxygen | | | immediate effect. | 1522A. * | | Supply
Bottle | | | | | | Bottle | | | | | | | | | | | | Combustion | TBD | FOMA -06-22: | Inability of the chamber | Combustion Chamber will be designed with | | Chamber | ושט | FOIVIA-00-22. | to hold a vacuum. | a structural factor of safety that will be | | (includes | | | Pressure transducers | xxMDP (based on yield) and xxMDP based | | optional | | | readings inside the | on ultimate. The Chamber will be designed | | ports, rear | | | chamber (PT 28 and | as a pressure vessel containing hazardous | | end cap,
window | | | PT 29) would indicate the condition. | fluids and tested to comply with the intent of MIL-STD-1522A. (Approach A) as modified | | assemblies, | | | and deridition. | by NSTS 1700.7B, para. 208.4a. A | | chamber | | | | hydrostatic proof test will be performed at | | window | | | | 1.5 x chamber MDP. A separate test will be | | structural | | | | conducted without water to test the chamber windows. Materials will be selected on the | | section, interface | | | | basis of their compatibility with experiment | | resource | | | | fluids and cleaning agents in accordance | | ring, and | | | | with MSFC-HDBK-527/JSC 09604/MAPTIS | | lid.) | | | | data base or approved MUA. There are at least 3 controls on pre-mix fuel | | | | | | flow to preclude conditions for adiabatic | | | | | | combustion: 1.) Pressure Regulator, 2.)IOP | | | | | | monitors Pressure transducers in pre-mix | | | | | | fuel manifold and chamber, 3.) fuel manifold has pressure switch to shut solenoid valve. | | | | | | And (4) – For experiments with non- | | | | | | continuous flow of f uel, igniters will be inhibited until GC identifies correct mixture. | | | | | | minibiled drilli GO identifies coffect flixtufe. | | Carrier gas
bottles | TBD | FOMA-07-6 | Visual & immediate. | Design would be for LBB: MIL-STD-1522A. Positive Margin for MBP. Hold on ignition or vent. FI to bottle. Go to Off-nominal Proc. Bottles should go through a contamination control process.Redundant filtering in design. | |----------------------------|-----|------------|--|---| | Calibration
Gas Bottles | TBD | FOMA-07-31 | Visual, loss of pressure
at PT22 if bottle bursts
while connected to
CIR. | Must design bottle to MIL-STD 1522A with positive margin on MBP. | ## 10.0 CONCLUSIONS AND RECOMENDATIONS TBD ## **11.0 NOTES** TBD #### APPENDEX A. ACRONYMS AND ABBREVIATIONS #### A.1 SCOPE This appendix lists the acronyms and abbreviations used in this document. A.2 LIST OF ACRONYMS AND ABBREVIATIONS CAN Controller Area Network CIL Critical Items List CIR Combustion Integrated Rack FCF Fluids and Combustion Facility FIR Fluids Integrated Rack FMEA Failure Modes and Effects Analysis IOP Input / Output Processor IPP Image Processor Package IPSU Image Processing and Storage Unit ISS International Space Station JSC Johnson Space Center MM/OD Micrometeor / Orbital Debris SAR Shared Accommodations Rack SDL Serial Data Link #### **APPENDEX B. DEFINITIONS** **Failure Mode Number** – A number on the FMEA worksheet which identifies a particular hardware item, a specific failure mode, and the corresponding block on the schematic. **Item** – A part, component, combination of parts, usually self-contained. **Function** – An action or process performed by a sub-system or component by design, which usually involves the transfer of energy and may include the transfer of information. [Note: an alternative definition may apply to passive components of a system such as structure whose "function" is load bearing capability. Welds, brazings, and epoxy have a function which is to provide adhesion of parts when subjected to forces. "Function" applies to fuels or oxygen in that their function is to transform energy from stored (potential) chemical energy to thermal energy.] **Failure** – The inability of a system, subsystem, component or part to perform its required function within specified limits, under specified conditions for a specified duration. **Failure Mode** – A description of the manner in which an item can fail. **Criticality** – The assigned category of a failure mode based upon the severity of its worst case effect which indicates if the failure mode is a single point failure or occurs from the failure of redundant devices. **Local Effect** – The consequences a failure mode has on the operation, function, or status of other items (within the payload system) which interface with the specific item being analyzed. $System\ Effect$ – The consequence(s) a failure mode has on the operation , function, or status of the overall system. **Hazard** – Existing or potential condition that can result in, or contribute to, the injury or loss of personnel or loss of an entire facility. **Single Point Failure** – A single item of hardware, the failure of which will lead directly to a hazard, reduce ability to conduct science or result in a mission critical worst case failure effect.